精英家教网 > 高中数学 > 题目详情
在平面直角坐标系中,曲线C1
x=1+t
y=-2+2t
(t为参数),以坐标原点为极点,以x轴的非负半轴为极轴,两坐标系的长度单位相同,曲线C2:ρ=2cosθ,则曲线C1与曲线C2的交点之间的距离为
 
考点:参数方程化成普通方程,简单曲线的极坐标方程
专题:计算题,直线与圆,坐标系和参数方程
分析:运用代入法,化曲线C1为直线:2x+y=0,运用x=ρcosθ,x2+y22,化曲线C2圆x2+y2-2x=0,再由点到直线的距离公式,求得圆心到直线的距离,再由弦长公式2
r2-d2
,即可得到所求值.
解答: 解:曲线C1
x=1+t
y=-2+2t
(t为参数),
化为普通方程为:2x+y=0,
曲线C2:ρ=2cosθ,
化为直角坐标方程为:x2+y2-2x=0,
即为圆心为(1,0),半径为1的圆,
则圆心到直线的距离为d=
|2+0|
5
=
2
5
5

则曲线C1与曲线C2的交点之间的距离为2
1-
4
5
=
2
5
5

故答案为:
2
5
5
点评:本题考查参数方程、极坐标方程与普通方程的互化,考查直线与圆相交的弦长问题,考查运算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆M:2x2+2y2-8x-8y-1=0和圆N:x2+y2+2x+2y-6=0,直线l:x+y-9=0.
(1)求过圆M,N的交点及原点O的圆的方程;
(2)过直线上一点作使∠BAC=45°,边AB过圆心M,且B,C在圆M上.
①当点A的横坐标为4时,求直线AC的方程;
②求点A的横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某物流公司计划在其停车库附近租地建仓库,已知每月土地占用费p(万元)与仓库到停车库的距离x(公里)成反比,而每月库存货物的运费k(万元)与仓库到停车库的距离x(公里)成正比.如果在距离停车库18公里处建仓库,这两项费用p和k分别为4万元和144万元,那么要使这两项费用之和最小,仓库到停车库的距离x=
 
公里.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的离心率为
2
2
,椭圆C的右焦点F2和抛物线y2=4
2
x的焦点重合,椭圆C与y轴的一个交点为N,且F1是椭圆C的左焦点.
(1)求证:△NF1F2是等腰直角三角形;
(2)当过点P(4,1)的动直线l与椭圆C相交于两不同点A,B时,在线段AB上取点Q,满足
|
PA
|
|
AQ
|
=
|
PB
|
|
QB
|
,求点Q的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对30名六年级学生进行了问卷调查得到如下列联表:平均每天喝500ml以上为常喝,体重超过50kg为肥胖.
常喝不常喝合计
肥胖2
不肥胖18
合计30
已知在全部30人中随机抽取1人,抽到肥胖的学生的概率为
4
15

(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为肥胖与常喝碳酸饮料有关?说明你的理由;
(3)现从常喝碳酸饮料且肥胖的学生中(2名女生),抽取2人参加电视节目,则正好抽到一男一女的概率是多少?
参考数据:
P(K2>k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c=d)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(
3
,cosωx),
b
=(sinωx,-1),(0<ω<3,x∈R).函数f(x)=
a
b
,若将函数f(x)的图象的其中一个对称中心到对称轴的最小距离为
π
4
个单位.
(I)求函数f(x)的解析式及其单调增区间;
(Ⅱ)若f(
α
2
)=
1
2
,(
π
6
<α<
2
3
π)
,求sinα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若定义在[-2014,2014]上的函数f(x)满足:对于任意的x1,x2∈[-2014,2014],有f(x1+x2)=f(x1)+f(x2)-2013,且x>0时,有f(x)>2013,f(x)的最大、小值分别为M、N,则M+N的值为(  )
A、4026B、4028
C、2013D、2014

查看答案和解析>>

科目:高中数学 来源: 题型:

已知过抛物线y2=6x焦点的弦长为12,则此弦所在直线的倾斜角是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x-3)2+(y-4)2=3,直线l:x+y-1=0,过点M(3,4)作圆C关于直线l的对称圆C′的二切线,且切点分别为A,B,则直线AB的方程为
 

查看答案和解析>>

同步练习册答案