精英家教网 > 高中数学 > 题目详情
为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对30名六年级学生进行了问卷调查得到如下列联表:平均每天喝500ml以上为常喝,体重超过50kg为肥胖.
常喝不常喝合计
肥胖2
不肥胖18
合计30
已知在全部30人中随机抽取1人,抽到肥胖的学生的概率为
4
15

(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为肥胖与常喝碳酸饮料有关?说明你的理由;
(3)现从常喝碳酸饮料且肥胖的学生中(2名女生),抽取2人参加电视节目,则正好抽到一男一女的概率是多少?
参考数据:
P(K2>k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c=d)
考点:独立性检验的应用
专题:计算题,概率与统计
分析:(1)根据全部50人中随机抽取1人看营养说明的学生的概率为
4
15
,做出看营养说明的人数,这样用总人数减去看营养说明的人数,剩下的是不看的,根据所给的另外两个数字,填上所有数字.
(2)根据列联表所给的数据,代入求观测值的公式,把观测值同临界值进行比较,得到有99.5%的把握说看营养说明与性别有关.
(3)利用列举法,求出基本事件的个数,即可求出正好抽到一男一女的概率.
解答: 解:(1)设常喝碳酸饮料肥胖的学生有x人,
x+3
30
=
4
15
,∴x=6
常喝不常喝合计
肥胖628
不胖41822
合计102030
…(3分)
(2)由已知数据可求得:K2=
30(6×18-2×4)2
10×20×8×22
≈8.522>7.879,
因此有99.5%的把握认为肥胖与常喝碳酸饮料有关.-------------(7分)
(3)设常喝碳酸饮料的肥胖者男生为A、B、C、D,女生为E、F,则任取两人有
AB,AC,AD,AE,AF,BC,BD,BE,BF,CD,CE,CF,DE,DF,EF,共15种.其中一男一女有AE,AF,BE,BF,CE,CF,DE,DF.故抽出一男一女的概率是P=
8
15
-----(12分)
点评:本题考查画出列联表,考查等可能事件的概率,考查独立性检验,在求观测值时,要注意数字的代入和运算不要出错.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设M是△ABC所在平面上的一点,且
MB
+
3
2
 
MA
+
3
2
MC
=
0
,D是AC中点,则
|
MD
|
|BM|
的值为(  )
A、
1
3
B、
1
2
C、1
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆C:
x2
3
+y2=1,直线l交椭圆C于A,B两点.
(1)若l过点P(1,
1
3
)且弦AB恰好被点P平分,求直线l方程.
(2)若l过点Q(0,2),求△AOB(O为原点)面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,过圆E外一点A作一条直线与圆E交与B,且AB=
1
3
AC,作直线AF与圆E相切于点F,连结EF交BC于点D,已知圆E的半径为2,∠EBC=30°
(1)求AF的长;
(2)求证:AD=3ED.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知焦点在y轴上的椭圆
x2
9
+
y2
m+9
=1的离心率为
1
2
,则m=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,曲线C1
x=1+t
y=-2+2t
(t为参数),以坐标原点为极点,以x轴的非负半轴为极轴,两坐标系的长度单位相同,曲线C2:ρ=2cosθ,则曲线C1与曲线C2的交点之间的距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设α是第二象限角,P(x,4)为其终边上的一点,且cosα=
1
5
x,则tanα等于(  )
A、-
4
3
B、-
3
4
C、
3
4
D、
4
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=alnx,a∈R.
(I)若曲线y=f(x)与曲线g(x)=
x
在交点处有共同的切线,求a的值;
(Ⅱ)若对任意x∈[1,e],都有f(x)≥-x2+(a+2)x恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-x(0≤x≤2)
4-x2
(-2≤x<0)
,则
2
-2
f(x)dx=
 

查看答案和解析>>

同步练习册答案