精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=x2-2x+m,在区间[-2,4]上随机取一个实数x,若事件“f(x)<0”发生的概率为$\frac{2}{3}$,则m=-3.

分析 本题符合几何概型,只要分别求出已知区间长度以及满足不等式的区间长度,再由根与系数的关系得到关于m的方程解之

解答 解:在区间[-2,4]上随机取一个数x对应的区间长度为6,
而使f(x)<0的概率为$\frac{2}{3}$,即x2-2x+m<0的概率为$\frac{2}{3}$,
得到使x2-2x+m<0成立的x的区间长度为4,即|x1-x2|=4,
所以(x1+x22-4x1x2=16,
所以4-4m=16,解得m=-3;
故答案为:-3.

点评 本题考查几何概型,解题的关键是:解不等式,确定其测度,利用概率的求法以及根与系数的关系得到关于m 的方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.f(x)是奇函数,且满足f(x+4)=f(x),当0≤x≤1时,f(x)=x,则f(7.5)的值为-0.5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若关于x的不等式ax-b>0的解集是(-∞,-2),关于x的不等式$\frac{a{x}^{2}+bx}{x-1}$>0的解集为(  )
A.(-2,0)∪(1,+∞)B.(-∞,0)∪(1,2)C.(-∞,-2)∪(0,1)D.(-∞,1)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设f(x)是定义在R上的周期为2的函数,当x∈[-1,1)时,f(x)=$\left\{\begin{array}{l}{-4{x}^{2}+\frac{10}{9},-1≤x≤0}\\{lo{g}_{3}x,0<x<1}\end{array}\right.$,
则f(f($\frac{3}{2}$))=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在边长为2的正方形ABCD中任取一点P,则△PAB、△PBC、△PCD、△PDA的面积均大于$\frac{1}{6}$的概率是(  )
A.$\frac{1}{4}$B.$\frac{1}{9}$C.$\frac{1}{36}$D.$\frac{25}{36}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,已知AB⊥平面BEC,AB∥CD,AB=BC=4,CD=2,△BEC为等边三角形,F,G分别是AB,CD的中点.求证.
(Ⅰ)平面ABE⊥平面ADE;
(Ⅱ)求平面ADE与平面EFG所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求函数$y={2^{{x^2}-2x+4}}$的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.从参加环保知识竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率分布直方图如图所示,观察图形,回答下列问题:
(1)[80,90)这一组的频数、频率分别是多少?
(2)估计这次环保知识竞赛的及格率(60分及以上为及格).
(3)估计这次环保知识竞赛成绩的平均值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数$y=-2{sin^2}x-2\sqrt{3}sinxcosx$的最小正周期和最大值分别(  )
A.$T=2π,{y_{max}}=2\sqrt{3}$B.$T=π,{y_{max}}=2\sqrt{3}$C.T=π,ymax=3D.T=π,ymax=1

查看答案和解析>>

同步练习册答案