分析 根据周期函数的定义得到f($\frac{3}{2}$)=f(2-$\frac{1}{2}$)=f(-$\frac{1}{2}$),然后将其代入函数解析式求值即可.
解答 解:∵f(x)是定义在R上的周期为2的函数,
∴f($\frac{3}{2}$)=f(2-$\frac{1}{2}$)=f(-$\frac{1}{2}$),
∵f(x)=$\left\{\begin{array}{l}{-4{x}^{2}+\frac{10}{9},-1≤x≤0}\\{lo{g}_{3}x,0<x<1}\end{array}\right.$,
∴f(-$\frac{1}{2}$)=-4×(-$\frac{1}{2}$)2+$\frac{10}{9}$=$\frac{1}{9}$,
∴f($\frac{1}{9}$)=log3${\;}^{\frac{1}{9}}$=-2.
故答案是:-2.
点评 本题主要考查函数周期的求解,根据条件推导f(x+T)=f(x)的形式是解决本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | -6 | B. | -2 | C. | $-\frac{2}{3}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com