精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,a、b、c分别是角A、B、C的对边,且 =﹣
(Ⅰ)求角B的大小;
(Ⅱ)若b= ,a+c=4,求△ABC的面积.

【答案】解:(Ⅰ)由正弦定理 得:a=2RsinA,b=2RsinB,c=2RsinC,
将上式代入已知
即2sinAcosB+sinCcosB+cosCsinB=0,
即2sinAcosB+sin(B+C)=0,
∵A+B+C=π,
∴sin(B+C)=sinA,
∴2sinAcosB+sinA=0,即sinA(2cosB+1)=0,
∵sinA≠0,∴
∵B为三角形的内角,∴
(II)将 代入余弦定理b2=a2+c2﹣2accosB得:
b2=(a+c)2﹣2ac﹣2accosB,即
∴ac=3,

【解析】(Ⅰ)根据正弦定理表示出a,b及c,代入已知的等式,利用两角和的正弦函数公式及诱导公式变形后,根据sinA不为0,得到cosB的值,由B的范围,利用特殊角的三角函数值即可求出角B的度数;(Ⅱ)由(Ⅰ)中得到角B的度数求出sinB和cosB的值,根据余弦定理表示出b2,利用完全平方公式变形后,将b,a+c及cosB的值代入求出ac的值,然后利用三角形的面积公式表示出△ABC的面积,把ac与sinB的值代入即可求出值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知(1+3x)n的展开式中,末三项的二项式系数的和等于121,求:

(1) 展开式中二项式系数最大的项;

(2) 展开式中系数最大的项.(结果可以以组合数形式表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学为提升学生的英语学习能力,进行了主题分别为“听”、“说”、“读”、“写”四场竞赛.规定:每场竞赛的前三名得分分别为,且),选手的最终得分为各场得分之和.最终甲、乙、丙三人包揽了每场竞赛的前三名,在四场竞赛中,已知甲最终分为分,乙最终得分为分,丙最终得分为分,且乙在“听”这场竞赛中获得了第一名,则“听”这场竞赛的第三名是(

A. B. C. D. 甲和丙都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解初三学生女生身高情况,某中学对初三女生身高进行了一次测量,所得数据整理后列出了频率分布表如下:

组 别

频数

频率

[145.5,149.5)

1

0.02

[149.5,153.5)

4

0.08

[153.5,157.5)

20

0.40

[157.5,161.5)

15

0.30

[161.5,165.5)

8

0.16

[165.5,169.5)

m

n

合 计

M

N

(1)求出表中所表示的数;

(2)画出频率分布直方图;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共个,生产一个卫兵需分钟,生产一个骑兵需分钟,生产一个伞兵需分钟,已知总生产时间不超过小时,若生产一个卫兵可获利润元,生产一个骑兵可获利润元,生产一个伞兵可获利润元.

(1)用每天生产的卫兵个数与骑兵个数表示每天的利润(元);

(2)怎么分配生产任务才能使每天的利润最大,最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有三个不同的零点(其中),则的值为( )

A. B. C. D. 1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cos ,g(x)=exf(x),其中e为自然对数的底数.
(1)求曲线y=g(x)在点(0,g(0))处的切线方程;
(2)若对任意 时,方程g(x)=xf(x)的解的个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知正方形和矩形所在的平面互相垂直, ,M是线段的中点.

Ⅰ)求证:∥平面

Ⅱ)求证: 平面

() 点到面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=loga(x+b)(其中a,b为常数,且a>0,a≠1)的图象经过点A(﹣2,0),B(1,2).
(1)求f(x)的解析式;
(2)若函数g(x)=( 2x﹣( x﹣1,x∈[0,+∞),求g(x)的值域.

查看答案和解析>>

同步练习册答案