精英家教网 > 高中数学 > 题目详情
7.3+5+7+…+(2n+7)=n2+8n+15.

分析 利用等差数列的通项公式与求和公式即可得出.

解答 解:3+5+7+…+(2n+7)=3+5+7+(2+7)+…+(2n+7)=$\frac{(n+3)(3+2n+7)}{2}$=n2+8n+15.
故答案为:n2+8n+15.

点评 本题考查了等差数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.记max{m,n}表示m,n中的最大值,如max$\left\{{3,\sqrt{10}}\right\}=\sqrt{10}$.已知函数f(x)=max{x2-1,2lnx},g(x)=max{x+lnx,-x2+(a2-$\frac{1}{2}$)x+2a2+4a}.
(1)设$h(x)=f(x)-3({x-\frac{1}{2}}){({x-1})^2}$,求函数h(x)在(0,1]上零点的个数;
(2)试探讨是否存在实数a∈(-2,+∞),使得g(x)<$\frac{3}{2}$x+4a对x∈(a+2,+∞)恒成立?若存在,求a的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若实数x,y满足条件$\left\{\begin{array}{l}{x-y+1≥0}\\{2x+y-2≥0}\\{x-1≤0}\end{array}\right.$则z=-$\frac{5}{4x+3y}$的最大值为(  )
A.-$\frac{15}{8}$B.-$\frac{5}{4}$C.-$\frac{1}{2}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在锐角△ABC中,a,b,c是角A,B,C的对边,且$\sqrt{3}a=2csinA$.
(1)求角C的大小;
(2)若a=2,且△ABC的面积为$\frac{3\sqrt{3}}{2}$,求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若x,y满足条件$\left\{\begin{array}{l}x-y≤2\\ x+y≥2\\ y≤2\end{array}$,则z=$\frac{y-x}{x-6}$的最大值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知a>0,函数f(x)=x2+alnx-ax在(0,+∞)上是增函数,则a的最大值为(  )
A.2B.$2\sqrt{2}$C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知{an}是等差数列,a3+a11=40,则a6-a7+a8等于(  )
A.20B.48C.60D.72

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在三棱柱ABC-A1B1C1中,AB、AC、AA1三条棱两两互相垂直,且AB=AC=AA1=2,E、F分别是BC、BB1的中点.
(Ⅰ)求证:C1E⊥平面AEF;
(Ⅱ)求F到平面AEC1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,$BC=\sqrt{7},AC=3,BC•sinB=2\sqrt{3}-sinA$,则△ABC的外接圆面积为(  )
A.$\frac{4}{3}π$B.$\frac{7}{3}π$C.D.$\frac{7}{2}π$

查看答案和解析>>

同步练习册答案