解:(1)作CE∥AB交AD的延长线于E,
∵AB⊥AD,
∴CE⊥AD.
又∵SA⊥面ABCD,
∴CE⊥SA,SA∩AD=A,
∴CE⊥面SAD,SE是SC在面SAD内的射影,
∴∠CSE=θ是SC与平面ASD所成的角,
易得SE=

,SC=

,
∴在Rt△CES中,cosθ=

=

(2)由SA⊥面ABCD,知面ABCD⊥面SAB,
∴△SCD在面SAB的射影是△SAB,
而△SAB的面积S
1=

×SA×AB=

,
设SC的中点是M,∵SD=CD=

,
∴DM⊥SC,DM=

∴△SCD的面积S
2=

×SC×DM

设平面SAB和平面SCD所成角为φ,
则由面积射影定理得cosφ=

=

分析:(1)作CE∥AB交AD的延长线于E,由∠ABC=∠BAD=90°,SA⊥平面ABCD,可证得SA⊥面ABCD,进而CE⊥面SAD,则∠CSE是SC与平面ASD所成的角,解Rt△CES即可得到答案.
(2)由SA⊥面ABCD,知面ABCD⊥面SAB,△SCD在面SAB的射影是△SAB,分别求出而△SAB的面积和△SCD的面积,代入cosφ=

,即可得到答案.
点评:本题考查的知识点是二面角的平面角及求法,直线与平面所成的角,其中(1)的关键是证得∠CSE是SC与平面ASD所成的角,(2)的关键是证得,△SCD在面SAB的射影是△SAB,进而cosφ=

.