【题目】已知函数f(x)=2 sinxcosx+2cos2x﹣1(x∈R) (Ⅰ)求函数f(x)的最小正周期及在区间[0, ]上的最大值和最小值;
(Ⅱ)若f(x0)= ,x0∈[ , ],求cos2x0的值.
【答案】解:(1)由f(x)=2 sinxcosx+2cos2x﹣1,得 f(x)= (2sinxcosx)+(2cos2x﹣1)= sin2x+cos2x=2sin(2x+ )
所以函数f(x)的最小正周期为π.
因为f(x)=2sin(2x+ )在区间[0, ]上为增函数,在区间[ , ]上为减函数,
又f(0)=1,f( )=2,f( )=﹣1,所以函数f(x)在区间[0, ]上的最大值为2,最小值为﹣1.
(Ⅱ)由(1)可知f(x0)=2sin(2x0+ )
又因为f(x0)= ,所以sin(2x0+ )=
由x0∈[ , ],得2x0+ ∈[ , ]
从而cos(2x0+ )=﹣ =﹣ .
所以
cos2x0=cos[(2x0+ )﹣ ]=cos(2x0+ )cos +sin(2x0+ )sin =
【解析】先将原函数化简为y=Asin(ωx+φ)+b的形式(1)根据周期等于2π除以ω可得答案,又根据函数图像和性质可得在区间[0, ]上的最值.(2)将x0代入化简后的函数解析式可得到sin(2x0+ )= ,再根据x0的范围可求出cos(2x0+ )的值, 最后由cos2x0=cos(2x0+ )可得答案.
科目:高中数学 来源: 题型:
【题目】如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC的长为10cm,容器Ⅱ的两底面对角线EG,E1G1的长分别为14cm和62cm. 分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm. 现有一根玻璃棒l,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)
(1)将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱CC1上,求l没入水中部分的长度;
(2)将l放在容器Ⅱ中,l的一端置于点E处,另一端置于侧棱GG1上,求l没入水中部分的长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数y=f(x),将f(x)图像沿x轴向右平移 个单位,然后把所得到图像上每一点的纵坐标保持不变,横坐标扩大到原来的2倍,这样得到的曲线与y=2sin(x﹣ )的图像相同,那么y=f(x)的解析式为( )
A.f(x)=2sin(2x﹣ )
B.f(x)=2sin(2x﹣ )
C.f(x)=2sin(2x+ )
D.f(x)=2sin(2x+ )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设 ,g(x)=ax+5﹣2a(a>0).
(1)求f(x)在x∈[0,1]上的值域;
(2)若对于任意x1∈[0,1],总存在x0∈[0,1],使得g(x0)=f(x1)成立,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本题满分15分)如图,已知四棱锥P–ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.
(Ⅰ)证明:CE∥平面PAB;
(Ⅱ)求直线CE与平面PBC所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,曲线: (为参数, ),在以坐标原点为极点, 轴的非负半轴为极轴的极坐标系中,曲线: .
(1)试将曲线与化为直角坐标系中的普通方程,并指出两曲线有公共点时的取值范围;
(2)当时,两曲线相交于, 两点,求.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com