精英家教网 > 高中数学 > 题目详情
2.求下列各式中的x.
(1)lgx=lg2-lg5;
(2)log2x=-3.

分析 (1)直接利用对数的运算法则求解.
(2)利用对数和指数的互化公式直接求解.

解答 解:(1)∵lgx=lg2-lg5=$lg\frac{2}{5}$,
∴x=$\frac{2}{5}$.
(2)∵log2x=-3,
∴x=2-3=$\frac{1}{8}$.

点评 本题考查式中的x的求法,是基础题,解题时要认真审题,注意对数性质和运算法则的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知f(3x)=4xlog23+233,则f(2)+f(4)+f(8)+f(16)=972.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.(1)求log48-log${\;}_{\frac{1}{9}}$3的值.
(2)求证:lg2+lg5=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.①设函数f(x)=2x-1,g(x)=4x+3,求f(g(x)),g(g(x));
②设函数f(x)=ax2+bx,且f(x+1)-f(x)=2x+2,求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若f(x)=$\left\{\begin{array}{l}{{x}^{2}+a,x<0}\\{{2}^{x},x≥0}\end{array}\right.$,且f(1)=f(-2),则a=(  )
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.计算:(log43+log83)$\frac{lg2}{lg3}$+log535-2log5$\frac{7}{3}$+log57-log51.8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知一个袋内有4只不同的红球,6只不同的白球.
(1)从中任取4只球,红球的只数不比白球少的取法有多少种?
(2)若取一只红球记2分,取一只白球记1分,从中任取5只球,使总分不小于7分的取法有多少种?
(3)在(2)条件下,当总分为8时,将抽出的球排成一排,仅有两个红球相邻的排法种数是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数f(x)=asin(x+$\frac{π}{4}$)+3sin(x-$\frac{π}{4}$)是偶函数,则a=-3,f(x)的最大值是3$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若△ABC为锐角三角形,则下列式子一定成立的是(  )
A.logcosC$\frac{sinA}{cosB}$>0B.logsinC$\frac{cosA}{cosB}$>0
C.logsinC$\frac{sinA}{sinB}$>0D.logsinC$\frac{cosA}{sinB}$>0

查看答案和解析>>

同步练习册答案