精英家教网 > 高中数学 > 题目详情
的公差大于零的等差数列,已知.
(1)求的通项公式;
(2)设是以函数的最小正周期为首项,以为公比的等比数列,求数列的前项和.
(1)
(2)
(1)设的公差为,则
解得(舍)
所以
(2)
其最小正周期为,故首项为1;
因为公比为3,从而 所以

练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设函数(其中),区间.
(1)求区间的长度(注:区间的长度定义为);
(2)把区间的长度记作数列,令,证明:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知正项数列中,其前项和为,且.
(1)求数列的通项公式;
(2)设,求证:
(3)设为实数,对任意满足成等差数列的三个不等正整数 ,不等式都成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,
第3小题满分8分.
如果数列同时满足:(1)各项均为正数,(2)存在常数k, 对任意都成立,那么,这样的数列我们称之为“类等比数列” .由此各项均为正数的等比数列必定是“类等比数列” .问:
(1)若数列为“类等比数列”,且k=(a2-a1)2,求证:a1、a2、a3成等差数列;
(2)若数列为“类等比数列”,且k=, a2、a4、a5成等差数列,求的值;
(3)若数列为“类等比数列”,且a1=a,a2=b(a、b为常数),是否存在常数λ,使得对任意都成立?若存在,求出λ;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(2011•湖北)已知数列{an}的前n项和为Sn,且满足:a1=a(a≠0),an+1=rSn(n∈N*,r∈R,r≠﹣1).
(1)求数列{an}的通项公式;
(2)若存在k∈N*,使得Sk+1,Sk,Sk+2成等差数列,试判断:对于任意的m∈N*,且m≥2,am+1,am,am+2是否成等差数列,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列的前三项分别为,(其中为正常数)。设
(1)归纳出数列的通项公式,并证明数列不可能为等比数列;
(2)若=1,求的值;
(3)若=4,试证明:当时,

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知数列是等差数列,且,那么数列的前11项和等于(    )
A.22B.24C.44D.48

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(5分)(2011•重庆)在等差数列{an}中,a2=2,a3=4,则a10=(      )
A.12B.14C.16D.18

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列满足,向量.
(1)求证数列为等差数列,并求通项公式;
(2)设,若对任意都有成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案