精英家教网 > 高中数学 > 题目详情
精英家教网如图,抛物线y2=4x的焦点为F,准线为l,经过F且斜率为
3
的直线与抛物线在x轴上方的部分相交于点A,AK⊥l,垂足为K,则△AKF的面积是
 
分析:先判断△AKF为等边三角形,求出A的坐标,可求出等边△AKF的边长AK=m+1的值,△AKF的面积可求.
解答:解:由抛物线的定义可得AF=AK,∵AF的斜率等于
3
,∴AF的倾斜角等于60°,∵AK⊥l,
∴∠FAK=60°,故△AKF为等边三角形.又焦点F(1,0),AF的方程为 y-0=
3
(x-1),
设A(m,
3
m-
3
),m>1,由AF=AK 得 
(m-1)2+(
3
m-
3
)
2
=m+1,
∴m=3,故等边三角形△AKF的边长AK=m+1=4,
∴△AKF的面积是
1
2
×4×4sin60°=4
3

故答案为4
3
点评:本题考查抛物线的定义、标准方程,以及简单性质的应用,判断△AKF为等边三角形是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图过抛物线C1x2=4y的对称轴上一点P(0,m)(m>0)作直线l与抛物线交于A(x1,y1),B(x2,y2)两点,点Q是P关于原点的对称点,以P,Q为焦点的椭圆为C2
(1)求证:x1x2为定值;
(2)若l的方程为x-2y+4=0,且C1,C2以及直线l有公共点,求C2的方程;
(3)设
AP
PB
,若
QP
⊥(
QA
QB
)
,求证:λ=μ

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图过抛物线数学公式的对称轴上一点P(0,m)(m>0)作直线l与抛物线交于A(x1,y1),B(x2,y2)两点,点Q是P关于原点的对称点,以P,Q为焦点的椭圆为C2
(1)求证:x1x2为定值;
(2)若l的方程为x-2y+4=0,且C1,C2以及直线l有公共点,求C2的方程;
(3)设数学公式,若数学公式,求证:λ=μ

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为[0,1],且满足下列条件:

①对于任意x∈[0,1],总有f(x)≥3,且f(1)=4;

②若x1≥0,x2≥0,x1+x2≤1,则有f(x1+x2)≥f(x1)+f(x2)-3.

(1)求f(0)的值;

(2)求证:f(x)≤4;

(3)当x∈(](n=1,2,3,…)时,试证明f(x)<3x+3.

(文)如图,设抛物线y2=2px(p>0)的焦点为F,经过点F的直线交抛物线于A、B两点,且A、B两点坐标为(x1,y1)、(x2,y2),y1>0,y2<0,P是此抛物线的准线上的一点,O是坐标原点.

(1)求证:y1y2=-p2;

(2)直线PA、PF、PB的方向向量为(1,a)、(1,b)、(1,c),求证:实数a、b、c成等差数列;

(3)若=0,∠APF=α,∠BPF=β,∠PFO=θ,求证:θ=|α-β|.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)如图,与抛物线x2=-4y相切于点A(-4,-4)的直线l分别交x轴、y轴于点F、E,过点E作y轴的垂线l0.

(1)若以l0为一条准线,中心在坐标原点的椭圆恰与直线l也相切,切点为T,求椭圆的方程及点T的坐标;

(2)若直线l与双曲线6x2-λy2=8的两个交点为M、N,且点A为线段MN的中点,又过点E的直线与该双曲线的两支分别交于P、Q两点,记在x轴正方向上的投影为p,且p2=m,m∈,求(1)中切点T到直线PQ的距离的最小值.

(文)如图,与抛物线x2=-4y相切于点A(-4,-4)的直线l分别交x轴、y轴于点F、E,过点E作y轴的垂线l0.

(1)若以l0为一条准线,中心在坐标原点的椭圆恰好过点F,求椭圆的方程;

(2)若直线l与双曲线6x2-λy2=8的两个交点为M、N,且点A为线段MN的中点,又过点E的直线与该双曲线的两支分别交于P、Q两点,记在x轴正方向上的投影为p,且=m,m∈,求直线PQ的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江西省上饶市上饶县中学高三(上)期末数学复习试卷3(解析版) 题型:解答题

如图过抛物线的对称轴上一点P(0,m)(m>0)作直线l与抛物线交于A(x1,y1),B(x2,y2)两点,点Q是P关于原点的对称点,以P,Q为焦点的椭圆为C2
(1)求证:x1x2为定值;
(2)若l的方程为x-2y+4=0,且C1,C2以及直线l有公共点,求C2的方程;
(3)设,若,求证:λ=μ

查看答案和解析>>

同步练习册答案