精英家教网 > 高中数学 > 题目详情
如图:在正方体ABCD-A1B1C1D1中,E为棱DD1的中点
(1)求证:BD1∥平面AEC
(2)求证:AC⊥BD1.
分析:(1)欲证BD1∥平面EAC,只需在平面EAC内找一条直线BD1与平行,根据中位线定理可知EF∥D1B,满足线面平行的判定定理所需条件,即可得到结论;
(2)根据正方形的性质及正方体的几何特征,结合线面垂直的性质,可得AC⊥BD,AC⊥D1D,由线面垂直的判定定理可得AC⊥平面D1DB,再由线面垂直的性质即可得到AC⊥BD1
解答:证明:(1)连接BD交AC于F,连EF.(1分)
因为F为正方形ABCD对角线的交点,
所长F为AC、BD的中点.(3分)
在DDD1B中,E、F分别为DD1、DB的中点,
所以EF∥D1B.(5分)
又EF?平面EAC,所以BD1∥平面EAC.(7分)
(2)由正方形的性质可得AC⊥BD
又由正方体的几何特征可得:D1D⊥平面ABCD
又∵AC?平面ABCD
∴AC⊥D1D
又∵D1D∩BD=D
∴AC⊥平面D1DB
∵BD1?平面D1DB
∴AC⊥BD1
点评:本题考查的知识点是直线与平面平行的判定,直线与平面垂直的判定,直线与平面垂直的性质,熟练掌握空间线线,线面垂直及平行的判定定理,性质定理及几何特征是解答此类问题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网若Rt△ABC中两直角边为a、b,斜边c上的高为h,则
1
h2
=
1
a2
+
1
b2
,如图,在正方体的一角上截取三棱锥P-ABC,PO为棱锥的高,记M=
1
PO2
,N=
1
PA2
+
1
PB2
+
1
PC2
,那么M、N的大小关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在正方体的一角上截取三棱锥P-ABC,PO为棱锥的高,记M=
1
PO2
N=
1
PA2
+
1
PB2
+
1
PC2
,那么M,N的大小关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网若Rt△ABC中两直角边为a、b,斜边c上的高为h,则
1
h2
=
1
a2
+
1
b2
,如图,在正方体的一角上截取三棱锥P-ABC,PO为棱锥的高,类比平面几何中的结论,得到此三棱锥中的一个正确结论为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A1B1C1D1中,E为DD1的中点,
(1)求证:AC⊥平面D1DB;
(2)BD1∥平面ABC.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A1B1C1D1中,点P是上底面A1B1C1D1内一动点,则三棱锥P-ABC的主视图与左视图的面积的比值为(  )

查看答案和解析>>

同步练习册答案