精英家教网 > 高中数学 > 题目详情
设椭圆(常数)的左右焦点分别为是直线上的两个动点,
(1)若,求的值;
(2)求的最小值.
(1)    (2)取最小值
第一问中解:设
   由,得
 ② 

第二问易求椭圆的标准方程为:

所以,当且仅当时,取最小值
解:设 ……………………1分
,由    ①……2分
(1)由,得 ②  ……………1分
   ③   ………………………1分
由①、②、③三式,消去,并求得. ………………………3分
(2)解法一:易求椭圆的标准方程为:.………………2分
, ……4分
所以,当且仅当时,取最小值.…2分
解法二:, ………………4分
所以,当且仅当时,取最小值
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设平面内两定点,直线相交于点,且它们的斜率之积为定值
(I)求动点的轨迹的方程;
(II)设,过点作抛物线的切线交曲线两点,求的面积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的左右焦点分别是,直线与椭圆交于两点.当时,M恰为椭圆的上顶点,此时△的周长为6.

(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆的左顶点为A,直线与直线分别相交于点,问当
变化时,以线段为直径的圆被轴截得的弦长是否为定值?若是,求出这个定值,
若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点,动点的轨迹曲线满足
,过点的直线交曲线两点.
(Ⅰ)求的值,并写出曲线的方程;
(Ⅱ)求△面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

,分别是椭圆E:+=1(0﹤b﹤1)的左、右焦点,过的直线与E相交于A、B两点,且成等差数列。
(1)求的周长
(2)求的长                       
(3)若直线的斜率为1,求b的值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设不等边三角形ABC的外心与重心分别为M、G,若A(-1,0),B(1,0)且MG//AB.
(Ⅰ)求三角形ABC顶点C的轨迹方程;
(Ⅱ)设顶点C的轨迹为D,已知直线过点(0,1)并且与曲线D交于P、N两点,若O为坐标原点,满足OP⊥ON,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆 )的一个顶点为分别是椭圆的左、右焦点,离心率 ,过椭圆右焦点 的直线  与椭圆 交于 , 两点.
(1)求椭圆的方程;
(2)是否存在直线 ,使得 ,若存在,求出直线  的方程;若不存在,说明理由;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知一条曲线C在y轴右边,C上每一点到点F(1,0)的距离减去它到y轴距离的差都是1
(1)求曲线C的方程.
(2)是否存在正数m,对于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有?若存在,求出m的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆与双曲线有相同的焦点,则的值是
A.B.1或-2 C.1或D.1

查看答案和解析>>

同步练习册答案