精英家教网 > 高中数学 > 题目详情
(本小题满分10分)已知二次函数f (x) = x2 – 16x + p + 3.
(1)若函数在区间上存在零点,求实数p的取值范围;
(2)问是否存在常数q(q≥0),当x∈[q,10]时,的值域为区间,且的长度为
12 – q.(注:区间[ab](ab)的长度为ba)
(1)–20≤p≤12;(2)存在常数q = 8或q = 9,当x∈[q,10]时,的值域为区间,且的长度为12–q
(1)利用零点存在性定理列出关于q的不等式,然后再利用不等式知识求解即可;(2)先利用单调性求出函数的值域,再利用区间长度列出关于q的方程,求解即可。
解:(1)∵二次函数f (x)= x2 – 16x + p + 3的对称轴是,∴函数在区间上单调递减,则函数在区间上存在零点须满足.                                             ……………2分
即(1 + 16 + p + 3)(1 – 16 + p + 3)≤0, 解得–20≤p≤12.   …………………4分
⑵ 当时,即0≤q≤6时,
的值域为:[f (8),f (q)],即[p–61, q2 –16q + p + 3].
∴区间长度为q2 – 16q + p + 3 – (p – 61) = q2 – 16q + 64 =" 12" – q
q2 – 15q + 52 =" 0" ∴,经检验不合题意,舍去.……6分
时,即6≤q<8时,的值域为:,即[p – 61,p – 57]
∴区间长度为p – 57 – (p – 61) =" 4" =" 12" – q ∴q = 8.经检验q = 8不合题意,舍去. …8分
q≥8时,的值域为:[f (q),f (10)],即 [q2 – 16q + p +3,p – 57].
∴区间长度为p – 57 –(q2 – 16q + p + 3) = –q2 – 16q – 60 =" 12" – q,
q2 – 17q + 72 =" 0" , ∴q = 8或q = 9.经检验q = 8或q = 9满足题意.
所以存在常数q = 8或q = 9,当x∈[q,10]时,的值域为区间,且的长度为12–q.                                              ………………………10分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(12分)已知函数
(1)求函数在区间上的最大值和最小值,(是自然对数的底数),
(2)求证:在区间上,函数的图像在函数的图像的下方。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知
求  (1) 和 的值
(2)的值,并求的解析式。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分10分)选修4-5:不等式选讲
已知函数
(1)当时,求函数的定义域;
(2)若关于的不等式的解集是,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=ax+cosx,x∈[0,π]。
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)设f(x)≤1+sinx,求a的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)有甲、乙两种商品,经销这两种商品所能获得的利润分别是万元和万元,它们与投入资金万元的关系为:今有3万元资金投入经营这两种商品,为获得最大利润,对这两种商品的资金分别投入多少时,能获得最大利润?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在实数集R中定义一种运算“△”,且对任意,具有性质:
;②;③
则函数的最小值为        .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数,且,则的值为  (   ) 
A.1B.C.D.0

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,则
A.0B.1C.3D.4

查看答案和解析>>

同步练习册答案