精英家教网 > 高中数学 > 题目详情
(12分)已知函数
(1)求函数在区间上的最大值和最小值,(是自然对数的底数),
(2)求证:在区间上,函数的图像在函数的图像的下方。
 
(2)见解析
(1)先求导研究极值,再与区间的端点的函数值进行比较从而确定其最值.
(2)本题的实质是证明在区间恒成立.然后利用导数研究其最小值即可
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)判断函数的单调性;
(2)证明:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
设函数对任意的实数,都有,且当时,
(1)若时,求的解析式;
(2)对于函数,试问:在它的图象上是否存在点,使得函数在点处的切线与平行。若存在,那么这样的点有几个;若不存在,说明理由。
(3)已知,且 ,记,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

对于函数若存在,使成立,则称点为函数的不动点,对于任意实数,函数总有相异不动点,实数的取值范围是____

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

.某同学为研究函数的性质,构造了如下图所示的两个边长为1的正方形,点是边上的一个动点,设,则. 请你参考这些信息,推知函数的图象的对称轴是       .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

对定义在区间l,上的函数,若存在开区间和常数C,使得对任意的都有,且对任意的x(a,b)都有恒成立,则称函数为区间I上的“Z型”函数.
(I)求证:函数是R上的“Z型”函数;
(Ⅱ)设是(I)中的“Z型”函数,若不等式对任意的xR恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数上是单调函数,则实数的取值范围是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分10分)已知二次函数f (x) = x2 – 16x + p + 3.
(1)若函数在区间上存在零点,求实数p的取值范围;
(2)问是否存在常数q(q≥0),当x∈[q,10]时,的值域为区间,且的长度为
12 – q.(注:区间[ab](ab)的长度为ba)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知的值等于­­­____▲      

查看答案和解析>>

同步练习册答案