分析 根据题意设出扇形的弧长与半径,通过扇形的周长与面积,即可求出扇形的弧长与半径,进而根据公式α=$\frac{l}{r}$求出扇形圆心角的弧度数,利用余弦定理即可求得AB的值.
解答 解:设扇形的弧长为:l,半径为r,所以2r+l=10,
∵S扇形=$\frac{1}{2}$lr=4,
解得:r=4,l=2,
∴扇形的圆心角的弧度数是:$\frac{2}{4}$=$\frac{1}{2}$;
∴由余弦定理可得:AB=$\sqrt{16+16-2×4×4×cos\frac{1}{2}}$=4$\sqrt{2-2cos\frac{1}{2}}$.
点评 本题主要考查扇形的周长与扇形的面积公式的应用,以及考查学生的计算能力,此题属于基础题型.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | 1 | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$-2 | B. | 2-$\sqrt{3}$ | C. | -2+$\sqrt{3}$ | D. | -2-$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)是偶函数 | B. | f(x)是单调函数 | C. | f(x)是周期函数 | D. | f(x)的值域为[-2,1] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com