精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=log2(x2﹣ax+1+a)在区间(﹣∞,2)上为减函数,则a的取值范围为(
A.[4,+∞)
B.[4,5]
C.(4,5)
D.[4,5)

【答案】B
【解析】解:令t=x2﹣ax+1+a>0,则y=log2t,
由t=x2﹣ax+1+a图象的对称轴为x= ,且y=log2t在(0,+∞)上单调增,f(x)=log2(x2﹣ax+1+a)在区间(﹣∞,2)上为减函数,
所以t=x2﹣ax+1+a在区间(﹣∞,2)上为减函数(同增异减)
所以2≤ ,且4﹣2a+1+a≥0,
解得:a∈[4,5],
故选:B.
【考点精析】利用二次函数的性质对题目进行判断即可得到答案,需要熟知当时,抛物线开口向上,函数在上递减,在上递增;当时,抛物线开口向下,函数在上递增,在上递减.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知下列命题:

①命题:x∈(0,2),3x>x3的否定是:x∈(0,2),3x≤x3

②若f(x)=2x﹣2﹣x,则x∈R,f(﹣x)=﹣f(x);

③若f(x)=x+,则x0∈(0,+∞),f(x0)=1;

④等差数列{an}的前n项和为Sn,若a4=3,则S7=21;

⑤在△ABC中,若A>B,则sinA>sinB.

其中真命题是____.(只填写序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={ x|x },B={ x|x>4 },则有(  )
A.2∈A∩B
B.2∈A∪B
C.2A∩B
D.2A∪B

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

如图,在正方形ABCD中,点E,F分别是AB,BC的中点.将△AED,△DCF分别沿DE,DF折起,使A,C两点重合于P.

(1)求证:平面PBD⊥平面BFDE;

(2)求二面角P﹣DE﹣F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组,已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有人.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ex (e为自然对数的底数).
(1)求函数y=f(x)在点(1,f(1))处的切线方程;
(2)当x∈(﹣1,+∞)时,证明:f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数 的图象向左平移φ(φ>0)个单位后,所得到的图象对应的函数为奇函数,则φ的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】假设要抽查某企业生产的某种品牌的袋装牛奶的质量是否达标,现从700袋牛奶中抽取50袋进行检验.利用随机数表抽取样本时,先将700袋牛奶按001,002,…,700进行编号,如果从随机数表第3行第1组数开始向右读,最先读到的5袋牛奶的编号是614,593,379,242,203,请你以此方式继续向右读数,随后读出的3袋牛奶的编号是 . (下列摘取了随机数表第1行至第5行)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,求曲线在点处的切线方程;

(2)若函数在其定义域内为增函数,求的取值范围;

(3)在(2)的条件下,设函数,若在上至少存在一点,使得成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案