精英家教网 > 高中数学 > 题目详情

【题目】已知条件P①是奇函数;②值域为R;③函数图象经过第四象限。则下列函数中满足条件Р的是(

A.B.C.D.

【答案】C

【解析】

利用奇函数的定义和值域的定义及其图象逐一进行判断即可.

对于A选项: ,

又因为的定义域为,关于原点对称,

所以为定义在上的偶函数,

故选项A不符合题意;

对于B选项: 的定义域为,

所以的定义域关于原点对称,

又因为,

所以为奇函数,①成立,

时,

时,

的值域为,②不成立,

所以选项B不符合题意;

对于C选项:因为,

所以的定义域为,关于原点对称,

又因为,

为奇函数,

因为函数的图象是由幂函数 的图象关于轴翻折得到的,

所以函数值域为,图像经过第四象限,

所以选项C符合题意;

对于D选项:因为的定义域为,关于原点对称,

又因为,

所以函数为奇函数,

因为 ,

所以函数的值域为,不符合题意.

所以选项D不符合题意;

故选: C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某大型单位举行了一次全体员工都参加的考试,从中随机抽取了20人的分数.以下茎叶图记录了他们的考试分数(以十位数字为茎,个位数字为叶):

若分数不低于95分,则称该员工的成绩为优秀”.

1)从这20人中任取3人,求恰有1人成绩优秀的概率;

2)根据这20人的分数补全下方的频率分布表和频率分布直方图,并根据频率分布直方图解决下面的问题.

组别

分组

频数

频率

1

2

3

4

①估计所有员工的平均分数(同一组中的数据用该组区间的中点值作代表);

②若从所有员工中任选3人,记表示抽到的员工成绩为优秀的人数,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合,若对于,,使得成立,则称集合M是“互垂点集”.给出下列四个集合:;;;.其中是“互垂点集”集合的为( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆,直线经过点,直线经过点,直线直线,且直线分别与椭圆相交于两点和两点.

()分别为椭圆的左、右焦点,且直线轴,求四边形的面积;

()若直线的斜率存在且不为0,四边形为平行四边形,求证:;

()()的条件下,判断四边形能否为矩形,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆的右焦点为,点分别是椭圆的上、下顶点,点是直线上的一个动点(与轴的交点除外),直线交椭圆于另一个点.

(1)当直线经过椭圆的右焦点时,求的面积;

(2)①记直线的斜率分别为,求证:为定值;

②求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中,中点.

(1)求证:平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于函数,有以下三个结论:

①函数恒有两个零点,且两个零点之积为

②函数的极值点不可能是

③函数必有最小值.

其中正确结论的个数有(

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若,试讨论的单调性;

2)若,实数为方程的两不等实根,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数.

1)若函数在区间上是单调函数,试求的取值范围;

2)若函数在区间上恰有3个零点,且,求的取值范围.

查看答案和解析>>

同步练习册答案