10£®ÒÑ֪ijÊÐÁ½´ÎÊýѧ²âÊԵijɼ¨¦Î1ºÍ¦Î2·Ö±ð·þ´ÓÕý̬·Ö²¼¦Î1£ºN1£¨90£¬86£©ºÍ¦Î2£ºN2£¨93£¬79£©£¬ÔòÒÔϽáÂÛÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®µÚÒ»´Î²âÊÔµÄÆ½¾ù·Ö±ÈµÚ¶þ´Î²âÊÔµÄÆ½¾ù·ÖÒª¸ß£¬Ò²±ÈµÚ¶þ´Î³É¼¨Îȶ¨
B£®µÚÒ»´Î²âÊÔµÄÆ½¾ù·Ö±ÈµÚ¶þ´Î²âÊÔµÄÆ½¾ù·ÖÒª¸ß£¬µ«²»ÈçµÚ¶þ´Î³É¼¨Îȶ¨
C£®µÚ¶þ´Î²âÊÔµÄÆ½¾ù·Ö±ÈµÚÒ»´Î²âÊÔµÄÆ½¾ù·ÖÒª¸ß£¬Ò²±ÈµÚÒ»´Î³É¼¨Îȶ¨
D£®µÚ¶þ´Î²âÊÔµÄÆ½¾ù·Ö±ÈµÚÒ»´Î²âÊÔµÄÆ½¾ù·ÖÒª¸ß£¬µ«²»ÈçµÚÒ»´Î³É¼¨Îȶ¨

·ÖÎö È·¶¨¦Ì1=90£¬?1=86£¬¦Ì2=93£¬?2=79£¬¼´¿ÉµÃ³ö½áÂÛ£®

½â´ð ½â£º¡ßijÊÐÁ½´ÎÊýѧ²âÊԵijɼ¨¦Î1ºÍ¦Î2·Ö±ð·þ´ÓÕý̬·Ö²¼¦Î1£ºN1£¨90£¬86£©ºÍ¦Î2£ºN2£¨93£¬79£©£¬
¡à¦Ì1=90£¬?1=86£¬¦Ì2=93£¬?2=79£¬
¡àµÚ¶þ´Î²âÊÔµÄÆ½¾ù·Ö±ÈµÚÒ»´Î²âÊÔµÄÆ½¾ù·ÖÒª¸ß£¬Ò²±ÈµÚÒ»´Î³É¼¨Îȶ¨£¬
¹ÊÑ¡£ºC£®

µãÆÀ ±¾Ì⿼²éÕý̬·Ö²¼ÇúÏßµÄÌØµã£¬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬±È½Ï»ù´¡£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÔÚÊýÁÐ{an}ÖУ¬a1=3£¬Èôº¯Êýy=3x-2µÄͼÏó¾­¹ýµã£¨an+1£¬an£©
£¨1£©ÇóÖ¤£ºÊýÁÐ{an-1}ΪµÈ±ÈÊýÁУ»
£¨2£©ÇóÊýÁÐ{an}µÄͨÏʽ¼°Ç°nÏîºÍSn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªÓÐÈçϵÈʽ£º
¢Ùtan5¡ãtan15¡ã+tan15¡ãtan70¡ã+tan5¡ãtan70¡ã=a£»
¢Útan10¡ãtan25¡ã+tan25¡ãtan55¡ã+tan10¡ãtan55¡ã=a£»
¢Ûtan15¡ãtan35¡ã+tan35¡ãtan40¡ã+tan15¡ãtan40¡ã=a£»
¢Ütan20¡ãtan45¡ã+tan45¡ãtan25¡ã+tan20¡ãtan25¡ã=a£®
£¨1£©¹Û²ìÒÔÉÏʽ×ӵĹæÂɲ¢ÓÃÌØÊâÖµÇó³öaµÄÖµ£»
£¨2£©¹éÄɳöÒ»°ãµÄµÈʽ²¢Ö¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÉèÊýÁÐ{an}ÊÇÒÔ3ΪÊ×Ï1Ϊ¹«²îµÄµÈ²îÊýÁУ¬{bn}ÊÇÒÔ1ΪÊ×Ï2Ϊ¹«±ÈµÄµÈ±ÈÊýÁУ¬Ôòba1+ba2+ba3+ba4=£¨¡¡¡¡£©
A£®15B£®60C£®63D£®72

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªÕýÏîµÈ²îÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÈôS3=12£¬ÇÒa1£¬a2£¬a3+2³ÉµÈ±ÈÊýÁУ®
£¨¢ñ£© Çó{an}µÄͨÏʽ£»
£¨¢ò£© Èôbn=3nan£¬ÊýÁÐ{bn}µÄǰnÏîºÍΪTn£¬ÇóTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®Èçͼ£¬ÔÚËÄÀâÖùABCD-A1B1C1D1ÖУ¬µ×ÃæABCDÊǾØÐΣ¬ÇÒAD=2CD=2£¬AA1=2£¬¡ÏA1AD=$\frac{¦Ð}{3}$£®ÈôOΪADµÄÖе㣬ÇÒCD¡ÍA1O
£¨¢ñ£©ÇóÖ¤£ºA1O¡ÍÆ½ÃæABCD£»
£¨¢ò£©Ïß¶ÎBCÉÏÊÇ·ñ´æÔÚÒ»µãP£¬Ê¹µÃ¶þÃæ½ÇD-A1A-PΪ$\frac{¦Ð}{6}$£¿Èô´æÔÚ£¬Çó³öBPµÄ³¤£»²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®Ä³ÈýÀâ×¶µÄÈýÊÓͼÈçͼËùʾ£¬¸ÃÈýÀâ×¶µÄÌå»ýÊÇ32£»

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖªÅ×ÎïÏßC1£ºy2=2px£¨p£¾0£©µÄ½¹µãΪF£¬Å×ÎïÏßÉÏ´æÔÚÒ»µãGµ½½¹µãµÄ¾àÀëΪ3£¬ÇÒµãGÔÚÔ²C£ºx2+y2=9ÉÏ£®
£¨¢ñ£©ÇóÅ×ÎïÏßC1µÄ·½³Ì£»
£¨¢ò£©ÒÑÖªÍÖÔ²C2£º$\frac{x^2}{m^2}+\frac{y^2}{n^2}$=1£¨m£¾n£¾0£©µÄÒ»¸ö½¹µãÓëÅ×ÎïÏßC1µÄ½¹µãÖØºÏ£¬ÇÒÀëÐÄÂÊΪ$\frac{1}{2}$£®Ö±Ïßl£ºy=kx-4½»ÍÖÔ²C2ÓÚA¡¢BÁ½¸ö²»Í¬µÄµã£¬ÈôÔ­µãOÔÚÒÔÏß¶ÎABΪֱ¾¶µÄÔ²µÄÍⲿ£¬ÇókµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖªÖ±Ïßl£º$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t-\sqrt{2}}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÇúÏßC£º$\left\{\begin{array}{l}{x=2cos¦È}\\{y=2sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬½«ÇúÏßCÉϸ÷µãµÄ×Ý×ø±ê¶¼Ñ¹ËõΪԭÀ´µÄÒ»°ë£¬µÃµ½ÇúÏßC1£¬Ö±ÏßlÓëÇúÏßC1½»ÓÚµãA¡¢B£¬OÎª×ø±êÔ­µã£®
£¨1£©ÇóÇúÏßC1µÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©Çó¡÷OABµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸