·ÖÎö £¨¢ñ£©ÉèµãGµÄ×ø±êΪ£¨x0£¬y0£©£¬Áгö¹ØÓÚx0£¬y0£¬pµÄ·½³Ì×飬¼´¿ÉÇó½âÅ×ÎïÏß·½³Ì£®
£¨¢ò£©ÀûÓÃÒÑÖªÌõ¼þÍÆ³öm¡¢nµÄ¹ØÏµ£¬É裨x1£¬y1£©¡¢B£¨x2£¬y2£©£¬ÁªÁ¢Ö±ÏßÓëÍÖÔ²·½³Ì£¬ÀûÓÃΤ´ï¶¨ÀíÒÔ¼°Åбðʽ´óÓÚ0£¬Çó³öKµÄ·¶Î§£¬Í¨¹ýÔµãOÔÚÒÔÏß¶ÎABΪֱ¾¶µÄÔ²µÄÍⲿ£¬ÍƳö$\overrightarrow{OA}•\overrightarrow{OB}£¾0$£¬È»ºóÇó½âkµÄ·¶Î§¼´¿É£®
½â´ð £¨±¾Ð¡ÌâÂú·Ö13·Ö£©
½â£º£¨¢ñ£©ÉèµãGµÄ×ø±êΪ£¨x0£¬y0£©£¬ÓÉÌâÒâ¿ÉÖª$\left\{{\begin{array}{l}{{x_0}+\frac{p}{2}=3}\\{{x_0}^2+{y_0}^2=9}\\{{y_0}^2=2p{x_0}}\end{array}}\right.$¡£¨2·Ö£©
½âµÃ£º${x_0}=1£¬{y_0}=¡À2\sqrt{2}£¬p=4$£¬
ËùÒÔÅ×ÎïÏßC1µÄ·½³ÌΪ£ºy2=8x¡£¨4·Ö£©
£¨¢ò£©ÓÉ£¨¢ñ£©µÃÅ×ÎïÏßC1µÄ½¹µãF£¨2£¬0£©£¬
¡ßÍÖÔ²C2µÄÒ»¸ö½¹µãÓëÅ×ÎïÏßC1µÄ½¹µãÖØºÏ¡àÍÖÔ²C2°ë½¹¾àc=2£¬m2-n2=c2=4£¬
¡ßÍÖÔ²C2µÄÀëÐÄÂÊΪ$\frac{1}{2}$£¬¡à$\frac{2}{m}=\frac{1}{2}⇒m=4$£¬$n=2\sqrt{3}$£¬
¡àÍÖÔ²C2µÄ·½³ÌΪ£º$\frac{x^2}{16}+\frac{y^2}{12}=1$¡£¨6·Ö£©
ÉèA£¨x1£¬y1£©¡¢B£¨x2£¬y2£©£¬
ÓÉ$\left\{\begin{array}{l}y=kx-4\\ \frac{x^2}{16}+\frac{y^2}{12}=1\;\end{array}\right.$µÃ£¨4k2+3£©x2-32kx+16=0
ÓÉΤ´ï¶¨ÀíµÃ£º${x_1}+{x_2}=\frac{32k}{{4{k^2}+3}}$£¬${x_1}{x_2}=\frac{16}{{4{k^2}+3}}$¡£¨8·Ö£©
ÓÉ¡÷£¾0⇒£¨-32k£©2-4¡Á16£¨4k2+3£©£¾0$⇒k£¾\frac{1}{2}$»ò$k£¼-\frac{1}{2}$¡¢Ù¡£¨10·Ö£©
¡ßÔµãOÔÚÒÔÏß¶ÎABΪֱ¾¶µÄÔ²µÄÍⲿ£¬Ôò$\overrightarrow{OA}•\overrightarrow{OB}£¾0$£¬
¡à$\overrightarrow{OA}•\overrightarrow{OB}=£¨{x_1}£¬{y_1}£©•£¨{x_2}£¬{y_2}£©={y_1}{y_2}+{x_1}{x_2}$
=$£¨k{x_1}-4£©•£¨k{x_2}-4£©+{x_1}{x_2}=£¨{k^2}+1£©{x_1}{x_2}-4k£¨{x_1}+{x_2}£©+16$
=$£¨{k^2}+1£©¡Á\frac{16}{{4{k^2}+3}}-4k¡Á\frac{32k}{{4{k^2}+3}}+16$
=$\frac{{16£¨4-3{k^2}£©}}{{4{k^2}+3}}£¾0$$⇒-\frac{{2\sqrt{3}}}{3}£¼k£¼\frac{{2\sqrt{3}}}{3}$¡¢Ú
ÓÉ¢Ù¡¢¢ÚµÃʵÊýkµÄ·¶Î§ÊÇ$-\frac{{2\sqrt{3}}}{3}£¼k£¼-\frac{1}{2}$»ò$\frac{1}{2}£¼k£¼\frac{{2\sqrt{3}}}{3}$¡£¨13·Ö£©
µãÆÀ ±¾Ì⿼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµµÄ×ÛºÏÓ¦Óã¬Ô²×¶ÇúÏßµÄ×ÛºÏÓ¦Ó㬿¼²é·ÖÎöÎÊÌâ½â¾öÎÊÌâµÄÄÜÁ¦£®
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 29 | B£® | 28 | C£® | 27 | D£® | 26 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | µÚÒ»´Î²âÊÔµÄÆ½¾ù·Ö±ÈµÚ¶þ´Î²âÊÔµÄÆ½¾ù·ÖÒª¸ß£¬Ò²±ÈµÚ¶þ´Î³É¼¨Îȶ¨ | |
| B£® | µÚÒ»´Î²âÊÔµÄÆ½¾ù·Ö±ÈµÚ¶þ´Î²âÊÔµÄÆ½¾ù·ÖÒª¸ß£¬µ«²»ÈçµÚ¶þ´Î³É¼¨Îȶ¨ | |
| C£® | µÚ¶þ´Î²âÊÔµÄÆ½¾ù·Ö±ÈµÚÒ»´Î²âÊÔµÄÆ½¾ù·ÖÒª¸ß£¬Ò²±ÈµÚÒ»´Î³É¼¨Îȶ¨ | |
| D£® | µÚ¶þ´Î²âÊÔµÄÆ½¾ù·Ö±ÈµÚÒ»´Î²âÊÔµÄÆ½¾ù·ÖÒª¸ß£¬µ«²»ÈçµÚÒ»´Î³É¼¨Îȶ¨ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | ³ä·Ö²»±ØÒªÌõ¼þ | B£® | ±ØÒª²»³ä·ÖÌõ¼þ | ||
| C£® | ³äÒªÌõ¼þ | D£® | ¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com