精英家教网 > 高中数学 > 题目详情
9.已知{an}是等差数列,a3=5,a9=17,数列{bn}的前n项和Sn=3n-1,若1+am=b4,则正整数m等于(  )
A.29B.28C.27D.26

分析 由题意和等差数列通项公式求出公差d和首项a1,再求出an,根据数列{bn}的前n项和Sn,以及“当n=1时,b1=S1;当n≥2时bn=Sn-Sn-1”关系式求出bn,代入1+am=b4求出m的值.

解答 解:设等差数列{an}的公差是d,
因为a3=5,a9=17,所以d=$\frac{17-5}{9-3}$=2,
则首项a1=a3-2d=1,
所以an=a1+(n-1)d=2n-1,
因为数列{bn}的前n项和Sn=3n-1,
所以当n=1时,b1=31-1=2,
当n≥2时,bn=Sn-Sn-1=3n-1-(3n-1-1)=2•3n-1
当n=1时,也满足上式,则bn=2•3n-1
因为1+am=b4,所以1+2m-1=2×27,解得m=27,
故选:C.

点评 本题考查了等差数列通项公式,以及当n=1时,b1=S1;当n≥2时bn=Sn-Sn-1”关系式的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知甲、乙二人决定各购置一辆纯电动汽车,甲从A、B、C三类车型中挑选,乙只从B、C两类车型中挑选,甲、乙二人选择各类车型的概率如下表:
车型
概率
AABBCC
$\frac{1}{6}$p1p2
/$\frac{1}{3}$$\frac{2}{3}$
若甲、乙两人都选C类车型的概率为$\frac{1}{3}$.
(1)求p1、p2的值;
(2)该市对购买纯电动汽车进行补贴,补贴标准如下表:
车型ABC
补贴金额(万元)123
记甲、乙两人购买所获得的财政补贴(单位:万元)的和为X,求X的数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在数列{an}中,a1=3,若函数y=3x-2的图象经过点(an+1,an
(1)求证:数列{an-1}为等比数列;
(2)求数列{an}的通项公式及前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知动点P在棱长为1的正方体ABCD-A1B1C1D1的表面上运动,且PA=r(0<r<$\sqrt{3}$),记点P的轨迹长度为f(r)给出以下四个命题:
①f(1)=$\frac{3}{2}$π
②f($\sqrt{2}$)=$\sqrt{3}$π
③f($\frac{2\sqrt{3}}{3}$)=$\frac{2\sqrt{3}}{3}$π
④函数f(r)在(0,1)上是增函数,f(r)在($\sqrt{2}$,$\sqrt{3}$)上是减函数
其中为真命题的是①④(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知{an}是等差数列,a3=5,a9=17,数列{bn}的前n项和Sn=3n,若am=b1+b4,则正整数m等于(  )
A.29B.28C.27D.26

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求经过点A(4,-5)且与直线l:x-2y+4=0相切于点B(-2,1)的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知有如下等式:
①tan5°tan15°+tan15°tan70°+tan5°tan70°=a;
②tan10°tan25°+tan25°tan55°+tan10°tan55°=a;
③tan15°tan35°+tan35°tan40°+tan15°tan40°=a;
④tan20°tan45°+tan45°tan25°+tan20°tan25°=a.
(1)观察以上式子的规律并用特殊值求出a的值;
(2)归纳出一般的等式并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设数列{an}是以3为首项,1为公差的等差数列,{bn}是以1为首项,2为公比的等比数列,则ba1+ba2+ba3+ba4=(  )
A.15B.60C.63D.72

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知抛物线C1:y2=2px(p>0)的焦点为F,抛物线上存在一点G到焦点的距离为3,且点G在圆C:x2+y2=9上.
(Ⅰ)求抛物线C1的方程;
(Ⅱ)已知椭圆C2:$\frac{x^2}{m^2}+\frac{y^2}{n^2}$=1(m>n>0)的一个焦点与抛物线C1的焦点重合,且离心率为$\frac{1}{2}$.直线l:y=kx-4交椭圆C2于A、B两个不同的点,若原点O在以线段AB为直径的圆的外部,求k的取值范围.

查看答案和解析>>

同步练习册答案