精英家教网 > 高中数学 > 题目详情
4.已知{an}是等差数列,a3=5,a9=17,数列{bn}的前n项和Sn=3n,若am=b1+b4,则正整数m等于(  )
A.29B.28C.27D.26

分析 利用{an}是等差数列,a3=5,a9=17,求出a0=1,d=2,求出b1+b4=57,即可求出m.

解答 解:假设an=a0+(n-1)d,可知a9-a3=6d=12,则d=2,
而a3=5,则a0=1.所以b1=S1=3,b4=S4-S3=54,则b1+b4=57,
因此am=a0+(m-1)d=1+2(m-1)=57=b1+b4,从而可得m=29.
故选:A.

点评 本题考查等差数列的通项,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.将函数y=sin(2x+θ)的图象向右平移$\frac{π}{6}$个单位,得到的图象关于y轴对称,则θ的一个可能的值为(  )
A.$\frac{π}{6}$B.$-\frac{π}{6}$C.$-\frac{π}{3}$D.$-\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设f(x)=$\frac{1}{2}$sin2x+$\frac{\sqrt{3}}{2}$cos2x+$\frac{\sqrt{3}}{2}$+a(其中a∈R).
(1)求f(x)的最小正周期;
(2)若f(x)的最小值为$\frac{\sqrt{3}}{2}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),过右焦点F且不与x轴垂直的直线l交椭圆于A,B两点,AB的垂直平分线交x轴于点N,求$\frac{NF}{AB}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如图,已知PA是圆O的切线,切点为A,PC过圆心O,且与圆O交于B,C两点,过C点作CD⊥PA,垂足为D,PA=4,BC=6,那么CD=$\frac{24}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知{an}是等差数列,a3=5,a9=17,数列{bn}的前n项和Sn=3n-1,若1+am=b4,则正整数m等于(  )
A.29B.28C.27D.26

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.画出函数y=x+sin|x|,x∈[-π,π]的大致图象.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在等比数列{an}中,a1=1,a3,a2+a4,a5成等差数列.
(1)求数列{an}的通项公式
(2)若数列{bn}满足b1+$\frac{{b}_{2}}{2}$+…+$\frac{{b}_{n}}{n}={a}_{n}$(n∈N+),{bn}的前n项和为Sn,求证Sn≤n•an(n∈N+

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右焦点为F,过F作斜率为-1的直线交双曲线的渐近线于点P,点P在第一象限,O为坐标原点,若△OFP的面积为$\frac{{{a^2}+{b^2}}}{8}$,则该双曲线的离心率为$\frac{\sqrt{10}}{3}$.

查看答案和解析>>

同步练习册答案