精英家教网 > 高中数学 > 题目详情
18.设数列{an}是以3为首项,1为公差的等差数列,{bn}是以1为首项,2为公比的等比数列,则ba1+ba2+ba3+ba4=(  )
A.15B.60C.63D.72

分析 分别运用等差数列和等比数列的通项公式,求出an,bn,再由通项公式即可得到所求.

解答 解:数列{an}是以3为首项,1为公差的等差数列,
则an=3+(n-1)×1=n+2,
{bn}是以1为首项,2为公比的等比数列,
则bn=2n-1
则ba1+ba2+ba3+ba4=a3+b4+b5+b6
=22+23+24+25=60.
故选B.

点评 本题考查等比数列和等差数列的通项公式,注意选择正确公式,考查运算能力,属于中档题和易错题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.一个体积为12$\sqrt{3}$的正三棱柱的三视图,如图所示,则此正三棱柱的侧视图面积为(  )
A.12B.8$\sqrt{3}$C.8D.6$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知{an}是等差数列,a3=5,a9=17,数列{bn}的前n项和Sn=3n-1,若1+am=b4,则正整数m等于(  )
A.29B.28C.27D.26

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若直线y=x+4与圆(x+a)2+(y-a)2=4a(0<a≤4)相交于A,B两点,则弦AB长的最大值为(  )
A.2$\sqrt{2}$B.4$\sqrt{2}$C.$\sqrt{10}$D.2$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在等比数列{an}中,a1=1,a3,a2+a4,a5成等差数列.
(1)求数列{an}的通项公式
(2)若数列{bn}满足b1+$\frac{{b}_{2}}{2}$+…+$\frac{{b}_{n}}{n}={a}_{n}$(n∈N+),{bn}的前n项和为Sn,求证Sn≤n•an(n∈N+

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知P是抛物线y2=4x上的一个动点,则P到直线l1:4x-3y+11=0和l2:x+1=0的距离之和的最小值是3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知某市两次数学测试的成绩ξ1和ξ2分别服从正态分布ξ1:N1(90,86)和ξ2:N2(93,79),则以下结论正确的是(  )
A.第一次测试的平均分比第二次测试的平均分要高,也比第二次成绩稳定
B.第一次测试的平均分比第二次测试的平均分要高,但不如第二次成绩稳定
C.第二次测试的平均分比第一次测试的平均分要高,也比第一次成绩稳定
D.第二次测试的平均分比第一次测试的平均分要高,但不如第一次成绩稳定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知抛物线C1:y2=2px(p>0)的焦点为F,抛物线上存在一点G到焦点的距离为3,且点G在圆C:x2+y2=9上.
(Ⅰ)求抛物线C1的方程;
(Ⅱ)已知椭圆C2:$\frac{x^2}{m^2}+\frac{y^2}{n^2}$=1(m>n>0)的一个焦点与抛物线C1的焦点重合,若椭圆C2上存在关于直线l:y=$\frac{1}{4}x+\frac{1}{3}$对称的两个不同的点,求椭圆C2的离心率e的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知a,b,c∈R,a2+b2+c2=1.
(1)若a+b+c=0,求a的最大值.
(2)若ab+bc+ca的最大值为M,解不等式|x+1|+|x-1|≥3M.

查看答案和解析>>

同步练习册答案