分析 如图所示,过点P分别作PM⊥l1,PN⊥l2,垂足分别为M,N.设抛物线的焦点为F,由抛物线的定义可得|PN|=|PF|,求|PM|+|PN|转化为求|PM|+|PF|,当三点M,P,F共线时,|PM|+|PF|取得最小值.利用点到直线的距离公式求解即可.
解答 解:如图所示,![]()
过点P分别作PM⊥l1,PN⊥l2,垂足分别为M,N.l2:x+1=0是抛物线y2=4x的准线方程.
抛物线y2=4x的焦点为F(1,0),
由抛物线的定义可得|PN|=|PF|,过P作直线l1:4x-3y+11=0的垂线,垂足为M,
∴|PM|+|PN|=|PM|+|PF|,当三点M,P,F共线时,|PM|+|PF|取得最小值.
其最小值为点F到直线l1的距离,∴|FM|=$\frac{|4-0+11|}{\sqrt{{4}^{2}+{3}^{2}}}$=3.
故答案为:3.
点评 本题考查了抛物线的定义及其性质、三点共线、点到直线的公式,考查转化思想的应用,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 观众年龄 | 支持A | 支持B | 支持C |
| 25岁以下(含25岁) | 180 | 240 | 360 |
| 25岁以上 | 120 | 120 | 180 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 15 | B. | 60 | C. | 63 | D. | 72 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\overline x=7.3,a=7.5$ | B. | $\overline x=7.4,a=7.5$ | C. | $\overline x=7.3,a=7和8$ | D. | $\overline x=7.4,a=7和8$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com