精英家教网 > 高中数学 > 题目详情
11.某网站对2015年中国好歌曲的参赛选手A、B、C三人进行网上投票,结果如下
 观众年龄支持A 支持B支持C
 25岁以下(含25岁) 180 240 360
 25岁以上 120120 180
在所有参与该活动的人中,按照观众的年龄和所支持选手不同用分层抽样的方法抽取n人,其中有5人支持A
(1)求n的值
(2)记抽取n人中,且年龄在25岁以上,支持选手B的为B1(i=1,2…),支持选手C的为C1(i=1,2,…),从B1,C1中随机选择两人进行采访,求两人均支持选手C的概率.

分析 (1)根据分层抽样时,各层的抽样比相等,结合已知构造关于n的方程,解方程可得n值.
(2)计算出“支持选手B”和“支持选手C且年龄在25岁以上的人数,代入古典概率概率计算公式,可得答案

解答 解:(1)∵利用层抽样的方法抽取n个人时,从“支持选手A”的人中抽取了5人,总人数为120+180+240+120+360+180=1200人
∴$\frac{5}{120+180}$=$\frac{n}{120+180+240+120+360+180}$,
解得n=20;
(2)从“支持选手B”的人中,用分层抽样的方法抽取人数且龄在25岁以上有20×$\frac{240+120}{1200}$×$\frac{120}{120+240}$=2人,记为a,b,
从“支持选手C”的人中,用分层抽样的方法抽取人数且龄在25岁以上有20×$\frac{360+180}{1200}$×$\frac{180}{360+180}$=3人,记为1,2,3,
从则这5人中任意选取2人,共有10种不同情况,分别为:(1,2),(1,3),(1,a),(1,b),(2,3),(2,a),(2,b),(3,a),(3,b),(a,b),两人均支持选手C事件有:(1,2),(1,3),(2,3)共3种.
故两人均支持选手C的概率P=$\frac{3}{10}$.

点评 本题考查的知识点是古典概型概率计算公式,其中熟练掌握利用古典概型概率计算公式求概率的步骤,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.某几何体的三视图如图所示,其中正视图和侧视图均为等腰直角三角形,俯视图是圆心角为直角的扇形,则该几何体的体积为$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在锐角三角形ABC中,若tanA,tanB,tanC依次成等差数列,则tanAtanC的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在极坐标系中,△AOB的3个顶点的坐标分别为A(2,$\frac{π}{6}$),B(4,$\frac{5π}{6}$),O(0,0),若BD为OA边上的高,求垂足D的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若直线y=x+4与圆(x+a)2+(y-a)2=4a(0<a≤4)相交于A,B两点,则弦AB长的最大值为(  )
A.2$\sqrt{2}$B.4$\sqrt{2}$C.$\sqrt{10}$D.2$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若把函数y=3cos(2x+$\frac{π}{3}$)的图象上的所有点向右平移m(m>0)个单位长度后,所得到的图象关于y轴对称,则m的最小值是(  )
A.$\frac{2}{3}π$B.$\frac{π}{3}$C.$\frac{π}{6}$D.$\frac{π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知P是抛物线y2=4x上的一个动点,则P到直线l1:4x-3y+11=0和l2:x+1=0的距离之和的最小值是3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.“a≤-2”是“函数f(x)=|x-a|在[-1,+∞)上单调递增”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.复数z=|${({\sqrt{3}-i})i}|+{i^{2015}}$(x=my+t为虚数单位),则复数z的共轭复数为(  )
A.2-iB.2+iC.4-iD.4+i

查看答案和解析>>

同步练习册答案