分析 利用等差数列列出关系式,利用三角形的内角和以及两角和的正切函数,化简求解即可.
解答 解:由题意知:A≠$\frac{π}{2}$,B≠$\frac{π}{2}$,C≠$\frac{π}{2}$,且A+B+C=π,tanA,tanB,tanC依次成等差数列,
∴2tanB=tanA+tanC,
∴tan(A+B)=tan(π-C)=-tanC,
又∵tan(A+B)=$\frac{tanA+tanB}{1-tanAtanB}$,
∴tanA+tanB=tan(A+B)(1-tanAtanB)=-tanC(1-tanAtanB)=-tanC+tanAtanBtanC,
即tanA+tanB+tanC=tanAtanBtanC,
∴tanAtanC=3.
故答案为:3.
点评 本题考查数列的应用,两角和的正切函数定义域,考查计算能力.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 观众年龄 | 支持A | 支持B | 支持C |
| 25岁以下(含25岁) | 180 | 240 | 360 |
| 25岁以上 | 120 | 120 | 180 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com