精英家教网 > 高中数学 > 题目详情
6.不等式-3x2+2x-1≥0的解集是∅.

分析 不等式-3x2+2x-1≥0化为:3x2-2x+1≤0,由于△<0,即可得出.

解答 解:不等式-3x2+2x-1≥0化为:3x2-2x+1≤0,
∵△=4-12=-8<0,
∴不等式的解集为:∅.
故答案为:∅.

点评 本题考查了一元二次不等式的解法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a2≠b2),直线l与椭圆交于A、B两点,以AB为直径的圆过坐标原点,证明O到AB的距离是定值.(用参数方程解)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知a为实数,数列{an}满足a1=a,当n≥2时${a_n}=\left\{\begin{array}{l}{a_{n-1}}-3,({a_{n-1}}>3)\\ 4-{a_{n-1}},({a_{n-1}}≤3)\end{array}\right.$,
(1)当a=100时,求数列{an}的前100项的和S100
(2)证明:对于数列{an},一定存在k∈N*,使0<ak≤3.
(3)令bn=$\frac{{a}_{n}}{{2}^{n}}$,当2<a<3时,求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知A、B、C为直线l上不同的三点,点O∉直线l,实数x满足关系式x2$\overrightarrow{OA}+2x\overrightarrow{OB}+\overrightarrow{OC}$=$\overrightarrow 0$,有下列结论中正确的个数有(  )
①${\overrightarrow{OB}^2}-\overrightarrow{OC}•\overrightarrow{OA}$≥0;   
②${\overrightarrow{OB}^2}-\overrightarrow{OC}•\overrightarrow{OA}$<0;
③x的值有且只有一个;   
④x的值有两个;
⑤点B是线段AC的中点.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,“$\overrightarrow{{A}{B}}$•$\overrightarrow{{A}{C}}$=0”是“△A BC为直角三角形”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.对于定义在正整数集且在正整数集上取值的函数f(x)满足f(1)≠1,且对?n∈N*,有f(n)+f(n+1)+f(f(n))=3n+1,则f(2)=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知平面向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$,$\overrightarrow{a}$=(-1,1),$\overrightarrow{b}$=(2,3),$\overrightarrow{c}$=(-2,k),若($\overrightarrow{a}$+$\overrightarrow{b}$)∥$\overrightarrow{c}$,则实数k=(  )
A.4B.-4C.8D.-8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.某几何体的三视图如图所示,其中正视图和侧视图均为等腰直角三角形,俯视图是圆心角为直角的扇形,则该几何体的体积为$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在锐角三角形ABC中,若tanA,tanB,tanC依次成等差数列,则tanAtanC的值为3.

查看答案和解析>>

同步练习册答案