精英家教网 > 高中数学 > 题目详情
14.已知A、B、C为直线l上不同的三点,点O∉直线l,实数x满足关系式x2$\overrightarrow{OA}+2x\overrightarrow{OB}+\overrightarrow{OC}$=$\overrightarrow 0$,有下列结论中正确的个数有(  )
①${\overrightarrow{OB}^2}-\overrightarrow{OC}•\overrightarrow{OA}$≥0;   
②${\overrightarrow{OB}^2}-\overrightarrow{OC}•\overrightarrow{OA}$<0;
③x的值有且只有一个;   
④x的值有两个;
⑤点B是线段AC的中点.
A.1个B.2个C.3个D.4个

分析 由存在实数x满足x2$\overrightarrow{OA}+2x\overrightarrow{OB}+\overrightarrow{OC}$=$\overrightarrow 0$,△≥0,得出①正确、②错误;
由x2$\overrightarrow{OA}$+2x$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow{0}$,得出$\overrightarrow{OC}$=-x2$\overrightarrow{OA}$-2x$\overrightarrow{OB}$,根据平面向量的基本定理,得出-x2-2x=1,判断③正确、④错误;
由$\overrightarrow{OB}$=$\frac{1}{2}$($\overrightarrow{OA}$+$\overrightarrow{OC}$),得出B是线段AC的中点,判断⑤正确.

解答 解:对于①,存在实数x满足x2$\overrightarrow{OA}+2x\overrightarrow{OB}+\overrightarrow{OC}$=$\overrightarrow 0$,∴${\overrightarrow{OB}}^{2}$-$\overrightarrow{OA}$•$\overrightarrow{OC}$≥0,∴①正确,②错误;
对于③,∵x2$\overrightarrow{OA}$+2x$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow{0}$,变形为$\overrightarrow{OC}$=-x2$\overrightarrow{OA}$-2x$\overrightarrow{OB}$,
∵A、B、C为直线l上不同的三点,点O∉直线l,
∴-x2-2x=1,解得x=-1,∴③正确;
对于④,由③知,④错误;
对于⑤,由③知,$\overrightarrow{OB}$=$\frac{1}{2}$($\overrightarrow{OA}$+$\overrightarrow{OC}$),∴点B是线段AC的中点,⑤正确;
综上,正确的命题是①③⑤.
故选:C.

点评 本题考查了平面向量的应用问题,也考查了一元二次方程有实数根的应用问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.f(x)=$\frac{1}{3}$ax3-$\frac{2a+1}{2}{x}^{2}$+2x+1.
(1)求f(x)的单调区间;
(2)x>0时,讨论f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=$\left\{\begin{array}{l}{(-x)^{\frac{1}{2}},x≤0}\\{lo{g}_{5}x,x>0}\end{array}\right.$,函数g(x)是周期为2的偶函数,且当x∈[0,1]时,g(x)=2x-1,则函数y=f(x)-g(x)的零点个数是(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若x、y∈R,则不等式xy(x-y)>0成立的一个充要条件是(  )
A.x<0<yB.y<x<0C.$\frac{1}{x}$<$\frac{1}{y}$D.x>y>0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在数列{an}中,$\frac{1}{(2-1){a}_{1}}$+$\frac{1}{({2}^{2}-1){a}_{2}}$…+$\frac{1}{({2}^{n}-1){a}_{n}}$=2n-1+$\frac{1}{{2}^{n}}$,则数列{an}的前n项和Sn=1-$\frac{1}{{2}^{n+1}-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.直角△ABC的三个顶点都在给定的抛物线y2=2x上,且斜边AB和y轴平行,则RT△ABC斜边上的高的长度为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.不等式-3x2+2x-1≥0的解集是∅.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.双曲线C:$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{4}$=1的离心率为$\frac{\sqrt{6}}{2}$;渐近线的方程为y=±$\frac{\sqrt{2}}{2}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.若椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)与直线x+y=1交于A、B两点,且|AB|=2$\sqrt{2}$,又M为AB的中点,O为坐标原点,直线OM的斜率为$\frac{\sqrt{2}}{2}$,求该椭圆的方程.

查看答案和解析>>

同步练习册答案