分析 首先,求a、b,为此需要得到关于a、b的两个方程,借助于OM的斜率,易得a、b的两个方程.
解答 解:设点M(x0,y0),A(x1,y1),B(x2,y2),
联立方程组$\left\{\begin{array}{l}{{b}^{2}{x}^{2}+{a}^{2}{y}^{2}={a}^{2}{b}^{2}}\\{x+y-1=0}\end{array}\right.$,得
(a2+b2)x2-2a2x+a2(1-b2)=0,
∴${x}_{1}{x}_{2}=\frac{{a}^{2}(1-{b}^{2})}{{a}^{2}+{b}^{2}}$,${x}_{1}+{x}_{2}=\frac{2{a}^{2}}{{a}^{2}+{b}^{2}}$,
∴|AB|=$\sqrt{2}$$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$
=$\sqrt{2}$$\frac{2ab}{{a}^{2}+{b}^{2}}$×$\sqrt{{a}^{2}+{b}^{2}-1}$=2$\sqrt{2}$,
∴$\frac{ab\sqrt{{a}^{2}+{b}^{2}-1}}{{a}^{2}+{b}^{2}}=1$,
∴a2b2(a2+b2-1)=(a2+b2)2,①
又M为AB的中点,
∴x0=$\frac{{x}_{1}+{x}_{2}}{2}$=$\frac{{a}^{2}}{{a}^{2}+{b}^{2}}$,
y0=1-x0=1-$\frac{{a}^{2}}{{a}^{2}+{b}^{2}}$=$\frac{{b}^{2}}{{a}^{2}+{b}^{2}}$,
∴$\frac{b}{a}=\frac{1}{\sqrt{2}}$,②
根据①②,得
${a}^{2}=\frac{11}{3}$,${b}^{2}=\frac{11}{6}$,
∴椭圆的方程$\frac{{x}^{2}}{\frac{11}{3}}+\frac{{y}^{2}}{\frac{11}{6}}=1$.
点评 本题主要考查了椭圆的应用,直线与圆锥曲线的位置关系的问题.一般是把直线与圆锥曲线的方程联立,充分利用判别式和韦达定理求得问题的解决.
科目:高中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com