精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=x3-ax.
(1)求证:当1<a<4时,方程f(x)=0在(1,2)内有根;
(2)若函数f(x)在[1,+∞)上是单调函数,求a的取值范围.

分析 (1)根据零点存在性定理直接判断即可,即只需说明f(1)f(2)<0;
(2)若函数f(x)在[1,+∞)上递增,则其导函数f′(x)≥0在[1,+∞)恒成立,然后分离参数a,求出函数的最值即可解决问题.

解答 解:(1)显然函数f(x)在(1,2)上连续,而1<a<4,所以1-a<0,4-a>0.
所以f(1)f(2)=(1-a)(8-2a)=2(1-a)(4-a)<0,
所以方程f(x)=0在(1,2)内有根.
(2)由题意f′(x)=3x2-a≥0在[1,+∞)上恒成立,
即a≤3x2在[1,+∞)上恒成立,
易知y=3x2在[1,+∞)上递增,所以ymin=3×12=3,
故所求a的范围是(-∞,3].

点评 本题考查了函数的零点判断的方法以及已知函数的单调性求参数范围的问题,主要是分离参数,转化为函数的最值问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.在数列{an}中,$\frac{1}{(2-1){a}_{1}}$+$\frac{1}{({2}^{2}-1){a}_{2}}$…+$\frac{1}{({2}^{n}-1){a}_{n}}$=2n-1+$\frac{1}{{2}^{n}}$,则数列{an}的前n项和Sn=1-$\frac{1}{{2}^{n+1}-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某厂商调查甲、乙两种不同型号电视机在10个卖场的销售量(单位:台),并根据这10个卖场的销售情况,得到如图所示的茎叶图.为了鼓励卖场,在同型号电视机的销售中,该厂商将销售量高于数据平均数的卖场命名为该型号电视机的“星级卖场”.
(Ⅰ)求在这10个卖场中,甲型号电视机的“星级卖场”的个数;
(Ⅱ)若在这10个卖场中,乙型号电视机销售量的平均数为26.7,求a>b的概率;
(Ⅲ)若a=1,记乙型号电视机销售量的方差为s2,根据茎叶图推断b为何值时,s2达到最小值.(只需写出结论)
(注:方差${s^2}=\frac{1}{n}[{({x_1}-\overline x)^2}+{({x_2}-\overline x)^2}+…+{({x_n}-\overline x)^2}]$,其中$\overline x$为x1,x2,…,xn的平均数)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=$\overrightarrow{a}•\overrightarrow{b}$=2,则|$\overrightarrow{a}$-$\overrightarrow{b}$|=2.若($\overrightarrow{a}-\overrightarrow{c}$)•($\overrightarrow{b}-2\overrightarrow{c}$)=0,则|$\overrightarrow{b}-\overrightarrow{c}$|的最小值为$\frac{\sqrt{7}-\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在数列{an}中,a1=3,若函数y=3x-2的图象经过点(an+1,an
(1)求证:数列{an-1}为等比数列;
(2)求数列{an}的通项公式及前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.若椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)与直线x+y=1交于A、B两点,且|AB|=2$\sqrt{2}$,又M为AB的中点,O为坐标原点,直线OM的斜率为$\frac{\sqrt{2}}{2}$,求该椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知动点P在棱长为1的正方体ABCD-A1B1C1D1的表面上运动,且PA=r(0<r<$\sqrt{3}$),记点P的轨迹长度为f(r)给出以下四个命题:
①f(1)=$\frac{3}{2}$π
②f($\sqrt{2}$)=$\sqrt{3}$π
③f($\frac{2\sqrt{3}}{3}$)=$\frac{2\sqrt{3}}{3}$π
④函数f(r)在(0,1)上是增函数,f(r)在($\sqrt{2}$,$\sqrt{3}$)上是减函数
其中为真命题的是①④(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求经过点A(4,-5)且与直线l:x-2y+4=0相切于点B(-2,1)的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在四棱柱ABCD-A1B1C1D1中,底面ABCD是矩形,且AD=2CD=2,AA1=2,∠A1AD=$\frac{π}{3}$.若O为AD的中点,且CD⊥A1O
(Ⅰ)求证:A1O⊥平面ABCD;
(Ⅱ)线段BC上是否存在一点P,使得二面角D-A1A-P为$\frac{π}{6}$?若存在,求出BP的长;不存在,说明理由.

查看答案和解析>>

同步练习册答案