精英家教网 > 高中数学 > 题目详情
15.已知长方体ABCD-A1B1C1D1的各个顶点都在球O的球面上,若球O的表面积为16π,且AB:AD:AA1=$\sqrt{3}$:1:2,则球O到平面ABCD的距离为(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

分析 由已知得球O的半径R=2,设AB=$\sqrt{3}$k,AD=k,AA1=2k,则(2k)2+k2+($\sqrt{3}$k)2=(2R)2=16,得到AA1,由此能求出球O到平面ABCD的距离.

解答 解:设球O的半径为R,16π=4πR2,R=2,2R=4,
设AB=$\sqrt{3}$k,AD=k,AA1=2k,
(2k)2+k2+($\sqrt{3}$k)2=(2R)2=16,
解得k=$\sqrt{2}$,
∴AA1=2$\sqrt{2}$,
∴球O到平面ABCD的距离为$\sqrt{2}$,
故选:B

点评 本题为长方体与外接球的问题,长方体的体对角线等于其外接球O的直径是解决问题的关键,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.直角△ABC的三个顶点都在给定的抛物线y2=2x上,且斜边AB和y轴平行,则RT△ABC斜边上的高的长度为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在等比数列{an}中,a1=1,a3,a2+a4,a5成等差数列.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足b1+$\frac{{b}_{2}}{2}$+…+$\frac{{b}_{n}}{n}$=an(n∈N•),{bn}的前n项和为Sn,求满足Sn-1>an+bn的n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设函数f(x)=(x-1)ex-ax2
(Ⅰ)若函数f(x)在(0,+∞)上单调递增,求实数a的取值范围;
(Ⅱ)当2<a<3时,求函数f(x)在[0,a]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.若椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)与直线x+y=1交于A、B两点,且|AB|=2$\sqrt{2}$,又M为AB的中点,O为坐标原点,直线OM的斜率为$\frac{\sqrt{2}}{2}$,求该椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设函数f(x)=$\frac{x}{m(x+2)}$,方程f(x)=x有唯一解,数列{an}满足f(an)=an+1(n∈N*),且f(1)=$\frac{2}{3}$数列{bn}满足bn=$\frac{{4-3{a_n}}}{a_n}({n∈{N^*}})$.
(Ⅰ)求证:数列$\left\{{\frac{1}{a_n}}\right\}$是等差数列;
(Ⅱ)数列{cn}满足cn=$\frac{1}{{{b_n}•{b_{n+1}}}}({n∈{N^*}})$,其前n项和为Sn,若存在n∈N*,使kSn=$\frac{1}{2}n+4({k∈R})$成立,求k的最小值;
(Ⅲ)若对任意n∈N*,使不等式$\frac{t}{{({\frac{1}{b_1}+1})({\frac{1}{b_2}+1})…({\frac{1}{b_n}+1})}}≤\frac{1}{{\sqrt{2n+1}}}$成立,求实数t的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图是某市11月1日至15日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200,表示空气质量重度污染,该市某校准备举行为期3天(连续3天)的运动会,在11月1日至11月13日任选一天开幕
(Ⅰ)求运动会期间至少两天空气质量优良的概率;
(Ⅱ)记运动会期间,空气质量优良的天数为ξ,求随机变量ξ的分布列和数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知φ∈R,则“φ=0”是“f(x)=sin(2x+φ)为奇函数”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在正四棱台ABCD-A1B1C1D1中,A1B1=a,AB=2a,AA1=$\sqrt{2}$a,E、F分别是AD、AB的中点.
(Ⅰ)求证:平面EFB1D1∥平面BDC1
(Ⅱ)求二面角D-BC1-C的余弦值的大小.
注:底面为正方形,从顶点向底面作垂线,垂足是底面中心,这样的四棱锥叫做正四棱锥.用一个平行于正四棱锥底面的平面去截该棱锥,底面与截面之间的部分叫做正四棱台.

查看答案和解析>>

同步练习册答案