| A. | 32 | B. | 42 | C. | 52 | D. | 63 |
分析 根据程序框图的流程,写出前几次循环得到的结果,直到满足判断框中的条件,结束循环,输出结果.
解答 解:运行算法,可得:
第一次S=3,i=4,i<10;
第二次S=3+4,i=5,i<10;
第三次S=3+4+5,i=6,i<10;
第四次S=3+4+5+6,i=7,i<10;
第五次S=3+4+5+6+7,i=8,i<10;
第六次S=3+4+5+6+7+8,i=9,i<10;
第七次S=3+4+5+6+7+8+9,i=10,i=10;
第八次S=3+4+5+6+7+8+9+10,i=11,i>10;
满足判断框中的条件,结束循环,此时输出S=52,
故选:C.
点评 本题考查程序框图的理解与运用,通过执行框图转化为数学求和问题,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ymin=-$\frac{5}{4}$,ymax=$\frac{5}{4}$ | B. | 无最小值,ymax=$\frac{5}{4}$ | ||
| C. | ymin=-$\frac{5}{4}$,无最大值 | D. | 既无最大值也无最小值 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 由金、银、铜、铁可导电,猜想:金属都可以导电 | |
| B. | 猜想数列$\frac{1}{1×2}$,$\frac{1}{2×3}$,$\frac{1}{3×4}$,…的通项公式为an=$\frac{1}{n(n+1)}$(n∈N+) | |
| C. | 由平面直角坐标系中圆的方程为(x-a)2+(y-b)2=r2,推测空间直角坐标系中球的方程为(x-a)2+(y-b)2+(z-c)2=r2 | |
| D. | 半径为r圆的面积S=πr2,则单位圆的面积S=π |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | N⊆M | B. | N∩M=∅ | C. | M⊆N | D. | M∪N=R |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{17}}}{2}$ | B. | $\frac{{\sqrt{15}}}{2}$ | C. | $\frac{{\sqrt{19}}}{4}$ | D. | $\frac{{\sqrt{17}}}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=2x3 | B. | y=|x|+1 | C. | y=-x2+4 | D. | y=($\frac{1}{2}$)|x| |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com