精英家教网 > 高中数学 > 题目详情
18.函数y=2x+$\sqrt{1-2x}$的最值为(  )
A.ymin=-$\frac{5}{4}$,ymax=$\frac{5}{4}$B.无最小值,ymax=$\frac{5}{4}$
C.ymin=-$\frac{5}{4}$,无最大值D.既无最大值也无最小值

分析 求得函数的定义域,设t=$\sqrt{1-2x}$(t≥0),可得函数即为f(t)=1-t2+t,配方求得二次函数的单调区间,可得最值情况.

解答 解:由1-2x≥0,可得x≤$\frac{1}{2}$,
设t=$\sqrt{1-2x}$(t≥0),
即有2x=1-t2
则f(t)=1-t2+t=-(t-$\frac{1}{2}$)2+$\frac{5}{4}$,
可得f(t)在[0,$\frac{1}{2}$]递增,在($\frac{1}{2}$,+∞)递减,
即有f(t)在t=$\frac{1}{2}$即x=$\frac{3}{8}$处取得最大值$\frac{5}{4}$,
无最小值.
故选:B.

点评 本题考查函数的最值的求法,注意运用换元法,运用二次函数的最值求法,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.某企业为了解下属某部门对本企业职工的服务情况,随机访问部分职工,根据被访问职工对该部门的评分,绘制频率分布直方图(如图所示).
(Ⅰ)求频率分布表中①、②、③位置相应数据,并在答题纸上完成频率分布直方图;
组号分组频数频率
第1组[50,60)50.050
第2组[60,70)0.350
第3组[70,80)30
第4组[80,90)200.200
第5组[90,100]100.100
合计1.00
(Ⅱ)为进一步了解情况,该企业决定在第3,4,5组中用分层抽样抽取5名职工进行座谈,求第3,4,5组中各自抽取的人数;
(Ⅲ)求该样本平均数$\overline x$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设a∈R,函数f(x)=lnx-ax.
(Ⅰ)求f(x)的单调递增区间;
(Ⅱ)设F(x)=f(x)+ax2+ax,问F(x)是否存在极值,若存在,请求出极值;若不存在,请说明理由;
(Ⅲ)设A(x1,y1),B(x2,y2)是函数g(x)=f(x)+ax图象上任意不同的两点,线段AB的中点为C(x0,y0),直线AB的斜率为为k.证明:k>g′(x0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.过椭圆$\frac{x^2}{25}+\frac{y^2}{9}=1$的右焦点F任作一条倾斜角不等于90°的直线交该椭圆于M,N两点,弦MN的垂直平分线交x轴于点P,则$\frac{{|{PF}|}}{{|{MN}|}}$=$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在某中学的“校园微电影节”活动中,学校将从微电影的“点播量”和“专家评分”两个角度来进行评优,若A电影的“点播量”和“专家评分”中至少有一项高于B电影,则称A电影不亚于B电影,已知共有5部微电影参展,如果某部电影不亚于其他4部,就称此部电影为优秀影片,那么在这5部微电影中,最多可能有5部优秀影片.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知幂函数y=(m2-m-1)x${\;}^{{m}^{2}-2m-2}$,不过原点,则幂函数为y=x-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=x2-2x+t,g(x)=x2-t(t∈R)
(1)当x∈[2,3]时,求函数f(x)的值域(用t表示)
(2)设集合A={y|y=f(x),x∈[2,3]},B={y|y=|g(x)|,x∈[2,3]},是否存在正整数t,使得A∩B=A.若存在,请求出所有可能的t的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图所示的算法流程图中,输出S的值为(  ) 
A.32B.42C.52D.63

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设定义在R上的偶函数f(x),满足对任意x∈R都有f(t)=f(2-t)且x∈(0,1]时,f(x)=$\frac{x}{{e}^{x}}$,a=f($\frac{2015}{3}$),b=f($\frac{2016}{5}$),c=f($\frac{2017}{7}$),用“<“表示a,b,c的大小关系是c<a<b.

查看答案和解析>>

同步练习册答案