分析 由已知得f(2+t)=f(2-2-t)=f(-t)=f(t),求出函数的周期性,结合函数f(x)在[0,1]的表达式求出f(x)的单调性,从而比较a,b,c的大小即可.
解答 解:∵定义在R上的偶函数y=f(x),满足对任意t∈R都有f(t)=f(2-t),
∴f(2+t)=f(2-2-t)=f(-t)=f(t),
∴f(x)是以2为周期的函数,
∵x∈[0,1]时,f(x)=$\frac{x}{{e}^{x}}$,
f′(x)=$\frac{1-x}{{e}^{x}}$≥0在[0,1]恒成立,
故f(x)在[0,1]递增,
由a=f($\frac{2015}{3}$)=f(1+$\frac{2}{3}$)=f(-$\frac{1}{3}$)=f($\frac{1}{3}$),
b=f($\frac{2016}{5}$)=f(1+$\frac{1}{5}$)=f(-$\frac{4}{5}$)=f($\frac{4}{5}$),
c=f($\frac{2017}{7}$)=f($\frac{1}{7}$),
∴c<a<b,
故答案为:c<a<b.
点评 本题考查函数值的求法,解题时要认真审题,注意函数性质的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | ymin=-$\frac{5}{4}$,ymax=$\frac{5}{4}$ | B. | 无最小值,ymax=$\frac{5}{4}$ | ||
| C. | ymin=-$\frac{5}{4}$,无最大值 | D. | 既无最大值也无最小值 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{17}}}{2}$ | B. | $\frac{{\sqrt{15}}}{2}$ | C. | $\frac{{\sqrt{19}}}{4}$ | D. | $\frac{{\sqrt{17}}}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=2x3 | B. | y=|x|+1 | C. | y=-x2+4 | D. | y=($\frac{1}{2}$)|x| |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (28,+∞) | B. | [15,+∞) | C. | [28,+∞) | D. | (15,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com