精英家教网 > 高中数学 > 题目详情

设命题p:函数f(x)=lg(ax2-4x+a)的定义域为R;命题q:不等式2x2+x>2+ax,在x∈(-∞,-1)上恒成立,如果命题“p∨q”为真命题,命题“p∧q”为假命题,求实数a的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

已知命题,则                  

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

设函数的定义域为,若存在非零实数使得对于任意,有,且,则称上的“高调函数”.现给出下列命题:
①函数上的“1高调函数”;
②函数上的“高调函数”;
③如果定义域为的函数上“高调函数”,那么实数的取值范围是
其中正确的命题是       .(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线.命题p: 直线l1:与抛物线C有公共点.命题q: 直线l2:被抛物线C所截得的线段长大于2.若为假, 为真,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设命题:实数满足,其中;命题:实数满足的必要不充分条件,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知命题:“,使等式成立”是真命题.
(1)求实数的取值集合
(2)设不等式的解集为,若的必要条件,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

:关于的不等式的解集是空集,试确定实数的取值范围,使得为真命题,为假命题。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

集合A=(―∞,―2]∪[3,+∞),关于x的不等式(x-2a)·(x+a)>0的解集为B(其中a<0).
(1)求集合B;
(2)设p:x∈A,q:x∈B,且Øp是Øq的充分不必要条件,求a的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知命题:任意,命题:函数上单调递减.
(1)若命题为真命题,求实数的取值范围;
(2)若均为真命题,求实数的取值范围.

查看答案和解析>>

同步练习册答案