精英家教网 > 高中数学 > 题目详情

集合A=(―∞,―2]∪[3,+∞),关于x的不等式(x-2a)·(x+a)>0的解集为B(其中a<0).
(1)求集合B;
(2)设p:x∈A,q:x∈B,且Øp是Øq的充分不必要条件,求a的取值范围。

(1)(-∞,2a)∪(-a,+∞);(2)(―∞,-3].

解析试题分析:(1)解一元二次不等式(x-2a)·(x+a)>0,可求出B=(-∞,2a)∪(-a,+∞);
(2)依据题意有p:x=∈(-2,3),q∈[2a,―a],可知(-2,3)[2a,―a]即,解得a≤-3
试题解析:解:(1)∵a<0,2a<-a,∴B={x|x<2a或x>-a}=(-∞,2a)∪(-a,+∞)…5分
(2)∵p:CRA=(-2,3),q:CRB=[2a,―a]
p是q的充分不必要条件知   CRACRB                8分
a≤-3, 所以a的取值范围为(―∞,-3]        12分
考点:1.一元二次不等式的解法;2.必要条件、充分条件与充要条件的判断;

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

命题:实数满足,其中,命题:实数满足 ,且 的必要不充分条件,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知命题,命题
(1)若p是q的充分条件,求实数m的取值范围;
(2)若m=5,“ ”为真命题,“ ”为假命题,求实数x的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知命题:方程有两个不相等的负实根,命题恒成立;若为真,为假,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设命题p:(4x-3)2≤1;命题q:x2-(2a+1)x+a(a+1)≤0,若的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知命题:复数,复数是虚数;命题:关于的方程的两根之差的绝对值小于;若为真命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知命题方程上有解,命题函数的值域为,若命题“”是假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

下列命题中_________为真命题.
①“A∩B=A”成立的必要条件是“AB”; w ②“若x2+y2=0,则x,y全为0”的否命题;
③“全等三角形是相似三角形”的逆命题;   ④“圆内接四边形对角互补”的逆否命题.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设命题p:函数f(x)=lg(ax2-4x+a)的定义域为R;命题q:不等式2x2+x>2+ax,在x∈(-∞,-1)上恒成立,如果命题“p∨q”为真命题,命题“p∧q”为假命题,求实数a的取值范围.

查看答案和解析>>

同步练习册答案