精英家教网 > 高中数学 > 题目详情

设命题p:(4x-3)2≤1;命题q:x2-(2a+1)x+a(a+1)≤0,若的必要不充分条件,求实数a的取值范围.

解析试题分析:先分别解出命题和命题的不等式的解集。由的关系根据互为逆否命题同真假得到命题的关系,即可得出的关系,根据两集和关系列出方程即可。
试题解析:.解:设

易知.   6分
的必要不充分条件,从而的充分不必要条件,即
    (10分)
故所求实数的取值范围是.    12分
考点:1命题;2充分必要条件;3集合间的关系。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

设函数的定义域为,若存在非零实数使得对于任意,有,且,则称上的“高调函数”.现给出下列命题:
①函数上的“1高调函数”;
②函数上的“高调函数”;
③如果定义域为的函数上“高调函数”,那么实数的取值范围是
其中正确的命题是       .(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

:关于的不等式的解集是空集,试确定实数的取值范围,使得为真命题,为假命题。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

集合A=(―∞,―2]∪[3,+∞),关于x的不等式(x-2a)·(x+a)>0的解集为B(其中a<0).
(1)求集合B;
(2)设p:x∈A,q:x∈B,且Øp是Øq的充分不必要条件,求a的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

给定两个命题,:对任意实数都有恒成立;.如果为真命题,为假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知命题p:x∈[1,2],x2-a≥0,命题q:x0∈R,x+2ax0+2-a=0,若“p且q”为真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知条件,条件,若的充分条件,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知命题:任意,命题:函数上单调递减.
(1)若命题为真命题,求实数的取值范围;
(2)若均为真命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知命题:方程在[-1,1]上有解;命题:只有一个实数满足不等式,若命题“p或q”是假命题,求实数a的取值范围.

查看答案和解析>>

同步练习册答案