精英家教网 > 高中数学 > 题目详情
6.已知y=f(x)+3x2的图象关于原点对称,若f(2)=3,函数g(x)=f(x)-3x,则g(-2)的值是(  )
A.12B.-12C.-21D.-27

分析 由对称性可得f(2)+3×22=-f(-2)-3×(-2)2,即得f(-2),从而可知g(-2).

解答 解:∵y=f(x)+3x2的图象关于原点对称,
∴f(2)+3×22=-f(-2)-3×(-2)2
又f(2)=3,∴f(-2)=-27,
∴g(-2)=f(-2)-3×(-2)=-27+6=-21,
故选:C.

点评 本题考查了函数奇偶性的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.式子 $\frac{{2cos{{10}°}-sin{{20}°}}}{{2sin{{70}°}}}$的值为$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)的导函数为f′(x),且f(x)=f′($\frac{π}{6}$)sinx+f′($\frac{π}{3}$)cosx+x,则f′($\frac{π}{3}$)=(  )
A.3-$\sqrt{3}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.3+$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知f(x)=2cos(2x+α)是偶函数,且在[0,$\frac{π}{4}$]上是增函数,求α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知i为虚数单位,复数z1=2+i,z2=1-2i,则z1+z2=(  )
A.1+iB.2-iC.3-iD.-i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数F(x)=lnx,f(x)=$\frac{1}{2}$x2+a,a为常数,直线l与函数F(x)和f(x)的图象都相切,且l与函数F(x)的图象的切点的横坐标是1
(Ⅰ)求直线l的方程和a的值;
(Ⅱ)求证:F(x)≤f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数f(x)=sin(x+$\frac{π}{6}$)(x∈R),为了得到函数y=f(x)的图象,只需将函数g(x)=sin(x+$\frac{π}{3}$)(x∈R)的图象(  )
A.向左平移$\frac{π}{12}$个单位长度B.向右平移$\frac{π}{12}$个单位长度
C.向左平移$\frac{π}{6}$个单位长度D.向右平移$\frac{π}{6}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求函数f(x)=3x-x3的单调性,并求出单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数y=4sin(ωx+φ)(ω>0,|φ|<π)部分图象如图,其中点A($\frac{2π}{3}$,0),B($\frac{8π}{3}$,0),则(  )
A.ω=$\frac{1}{2}$,φ=-$\frac{2π}{3}$B.ω=1,φ=-$\frac{2π}{3}$C.ω=$\frac{1}{2}$,φ=-$\frac{π}{3}$D.ω=1,φ=-$\frac{π}{3}$

查看答案和解析>>

同步练习册答案