精英家教网 > 高中数学 > 题目详情
已知数列的前项和为满足
(1)证明数列为等比数列;
(2)设,求数列的前项和
(1)详见解析;(2)  .

试题分析:(1)根据已知,当时,,然后两式相减,利用,得到关于数列的递推公式,;
(2),由形式分析,的前n项和用错位相减法求和,的前n项和用等差数列前n项和公式.
解:(1)
两式相减得:
即:
又因为
所以数列为首项为公比为的等比数列
(2)由(1)知 
所以


      (1)
      (2)
(1)-(2)得

故:  ;2.等比数列的定义;3.错位相减法.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知等比数列中,,公比的前n项和.
(1)求
(2)设,求数列的通项公式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知等比数列{an}的前n项和Sn满足:S4-S1=28,且a3+2是a2,a4的等差中项.
(1)求数列{an}的通项公式;
(2)若数列{an}为递增数列,,问是否存在最小正整数n使得成立?若存在,试确定n的值,不存在说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知等比数列________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(2013·大纲全国卷)已知数列{an}满足3an+1+an=0,a2=-,则{an}的前10项和等于(  )
A.-6(1-3-10)B.(1-3-10)
C.3(1-3-10) D.3(1+3-10)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

数列中,是正整数),则数列的通项公式         .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知等比数列的公比为q,记
,则以下结论一定正确的是(   )
A.数列为等差数列,公差为B.数列为等比数列,公比为
C.数列为等比数列,公比为D.数列为等比数列,公比为

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知三个数成等比数列,则圆锥曲线的离心率为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若等比数列{an}满足a2a4=,则=       

查看答案和解析>>

同步练习册答案