【题目】在平面直角坐标系xOy中,圆C:x2+y2+4x-2y+m=0与直线
相切.
(1)求圆C的方程;
(2)若圆C上有两点M,N关于直线x+2y=0对称,且
,求直线MN的方程.
【答案】(1)
;(2)![]()
【解析】
试题(1)利用圆心到直线的距离
,求出半径,即可求圆
的方程;(2)若圆
上有两点
,
关于直线
对称,则设方程为
,利用
,可得圆心到直线的距离
,即可求直线
的方程.
试题解析:(1)将圆C:x2+y2+4x-2y+m=0化为(x+2)2+(y-1)2=5-m,因为圆C:x2+y2+4x-2y+m=0与直线
相切,所以圆心(-2,1)到直线
的距离
,所以圆C的方程为(x+2)2+(y-1)2=4.
(2)若圆C上有两点M,N关于直线x+2y=0对称,则可设直线MN的方程为2x-y+c=0,因为
,半径r=2,所以圆心(-2,1)到直线MN的距离为
,则
,所以
,所以直线MN的方程为
.
科目:高中数学 来源: 题型:
【题目】2018年9月24日,阿贝尔奖和菲尔兹奖双料得主、英国著名数学家阿蒂亚爵士宣布自己证明了黎曼猜想,这一事件引起了数学界的震动.在1859年,德国数学家黎曼向科学院提交了题目为《论小于某值的素数个数》的论文并提出了一个命题,也就是著名的黎曼猜想.在此之前,著名数学家欧拉也曾研究过这个问题,并得到小于数字
的素数个数大约可以表示为
的结论.若根据欧拉得出的结论,估计10000以内的素数的个数为(素数即质数,
,计算结果取整数)
A. 1089 B. 1086 C. 434 D. 145
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设不等式组
表示的区域为A,不等式组
表示的区域为B.
(1)在区域A中任取一点(x,y),求点(x,y)∈B的概率;
(2)若x、y分别表示甲、乙两人各掷一次骰子所得的点数,求点(x,y)在区域B中的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平面直角坐标系xOy中,已知椭圆C:
1(a>b>0)的离心率为
,左右焦点分别是F1,F2,以F1为圆心,以3为半径的圆与以F2为圆心,以1为半径的圆相交,且交点
在椭圆C上.
(1)求椭圆C的方程;
(2)设椭圆E:
1,P为椭圆C上任意一点,过点P的直线y=kx+m交椭圆E于A,B两点.射线PO交椭圆E于点Q.
(i)求
的值,
(ii)求△ABQ面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线
,
,过点
的直线
分别与直线
,
交于
,其中点
在第三象限,点
在第二象限,点
;
(1)若
的面积为
,求直线
的方程;
(2)直线
交于
点
,直线
交
于点
,若
直线的斜率均存在,分别设为
,判断
是否为定值?若为定值,求出该定值;若不为定值,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平行四边形
中,过点
的直线与线段
分别相交于点
,若
.
(1)求
关于
的函数解析式;
(2)定义函数
,点列
在函数
的图像上,且数列
是以1为首项,
为公比的等比数列,
为原点,令
,是否存在点
,使得
?若存在,求出
点的坐标,若不存在,说明理由.
(3)设函数
为
上的偶函数,当
时,
函数
的图像关于直线
对称,当方程
在
上有两个不同的实数解时,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在四棱锥
中,底面
是边长为
的正方形,
是正三角形,
,
分别是
的中点。
(1)求证:
;
(2)求平面
与平面
所成锐二面角的大小;
(3)线段
上是否存在一个动点
,使得直线
与平面
所成角为
,若存在,求线段
的长度,若不存在,说明理由.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个经销鲜花产品的微店,为保障售出的百合花品质,每天从云南鲜花基地空运固定数量的百合花,如有剩余则免费分赠给第二天购花顾客,如果不足,则从本地鲜花供应商处进货.今年四月前10天,微店百合花的售价为每支2元,云南空运来的百合花每支进价1.6元,本地供应商处百合花每支进价1.8元,微店这10天的订单中百合花的需求量(单位:支)依次为:251,255,231,243,263,241,265,255,244,252.
![]()
(Ⅰ)求今年四月前10天订单中百合花需求量的平均数和众数,并完成频率分布直方图;
(Ⅱ)预计四月的后20天,订单中百合花需求量的频率分布与四月前10天相同,百合花进货价格与售价均不变,请根据(Ⅰ)中频率分布直方图判断(同一组中的需求量数据用该组区间的中点值作代表,位于各区间的频率代替位于该区间的概率),微店每天从云南固定空运250支,还是255支百合花,四月后20天百合花销售总利润会更大?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com