精英家教网 > 高中数学 > 题目详情
14.写出数列的一个通项公式an=$\frac{n}{(2n+1)(2n+3)}$,使其前4项为$\frac{1}{15}$,$\frac{2}{35}$,$\frac{3}{63}$,$\frac{4}{99}$.

分析 根据15=3×5,35=5×7,63=7×9,99=9×11,即可得出.

解答 解:因为15=3×5,35=5×7,63=7×9,99=9×11,
所以数列的一个通项公式an=$\frac{n}{(2n+1)(2n+3)}$,
故答案为:$\frac{n}{(2n+1)(2n+3)}$

点评 本题考查了数列通项公式的求法、等差数列的通项公式,考查了观察分析猜想归纳的能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知向量$\overrightarrow{a}$=(m,m+1),$\overrightarrow{b}$=(2,-1),若$\overrightarrow{a}⊥\overrightarrow{b}$,则实数m=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若集合A={x|(x+2)(3-2x)<0},B={y|y=x2,x∈R},则A∩(∁RB)=(  )
A.(-∞,-2)B.(-2,3)C.(-∞,-2)∪($\frac{3}{2}$,3)D.(-∞,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)的导函数为f′(x),且满足f(x)=2xf′(1)+lnx,则f′(2)=(  )
A.$\frac{3}{2}$B.1C.-1D.-$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列函数中,既是奇函数又零点个数最多的是(  )
A.y=-x3-1,x∈RB.y=x+$\frac{1}{x}$,x∈R,且x≠0
C.y=-x3-x,x∈RD.y=-x3(x2-1),x∈R,且x≠0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合M={-1,0,1},集合N={y|y=sinx,x∈M},则M∩N=(  )
A.{-1,0,1}B.{0,1}C.{1}D.{0}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=ax2-(2a+1)x+lnx(a∈R)
(Ⅰ)当a>0时,求函数f(x)的单调区间;
(Ⅱ)设g(x)=f(x)+2ax,若g(x)有两个极值点x1,x2,且不等式g(x1)+g(x2)<λ(x1+x2)恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.tan$\frac{3π}{4}$的值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=(sinx-cosx)2+$\sqrt{3}$sin(2x+$\frac{3π}{2}$)(x∈R).
(1)求函数f(x)的递减区间;
(2)若f(α)=$\frac{3}{13}$,α∈($\frac{π}{12}$,$\frac{π}{2}$),求cos(2α+$\frac{7π}{12}$).

查看答案和解析>>

同步练习册答案