分析 (1)利用三角恒等变换化简函数的解析式,再利用正弦函数的单调性求得函数f(x)的递减区间.
(2)由题意求得sin(2α+$\frac{π}{3}$) 的值,利用同角三角函数的基本关系求得cos(2α+$\frac{π}{3}$)的值,再利用两角和的余弦公式求得cos(2α+$\frac{7π}{12}$)=cos[(2α+$\frac{π}{3}$)+$\frac{π}{4}$]的值.
解答 解:(1)函数f(x)=(sinx-cosx)2+$\sqrt{3}$sin(2x+$\frac{3π}{2}$)=1-sin2x-$\sqrt{3}$cos2x=1-2($\frac{1}{2}$sin2x+$\frac{\sqrt{3}}{2}$cos2x)=1-2sin(2x+$\frac{π}{3}$),
令2kπ-$\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,求得kπ-$\frac{5π}{12}$≤x≤kπ+$\frac{π}{12}$,可得函数的减区间为[kπ-$\frac{5π}{12}$,kπ+$\frac{π}{12}$],k∈Z.
(2)∵f(α)=$\frac{3}{13}$,α∈($\frac{π}{12}$,$\frac{π}{2}$),∴1-2sin(2α+$\frac{π}{3}$)=$\frac{3}{13}$,∴sin(2α+$\frac{π}{3}$)=$\frac{5}{13}$,
根据2α+$\frac{π}{3}$∈($\frac{π}{2}$,$\frac{4π}{3}$),可得cos(2α+$\frac{π}{3}$)=-$\sqrt{{1-sin}^{2}(2α+\frac{π}{3})}$=-$\frac{12}{13}$.
故cos(2α+$\frac{7π}{12}$)=cos[(2α+$\frac{π}{3}$)+$\frac{π}{4}$]=cos(2α+$\frac{π}{3}$)cos$\frac{π}{4}$-sin(2α+$\frac{π}{3}$)sin$\frac{π}{4}$=-$\frac{12}{13}$•$\frac{\sqrt{2}}{2}$-$\frac{5}{13}$•$\frac{\sqrt{2}}{2}$=-$\frac{17\sqrt{2}}{26}$.
点评 本题主要考查三角恒等变换,正弦函数的单调性,同角三角函数的基本关系,两角和的余弦公式的应用,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | -$\frac{25}{24}$ | C. | 1 | D. | $\frac{25}{24}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com