精英家教网 > 高中数学 > 题目详情
19.已知集合M={-1,0,1},集合N={y|y=sinx,x∈M},则M∩N=(  )
A.{-1,0,1}B.{0,1}C.{1}D.{0}

分析 先分别求出集合M,集合N,由此利用交集定义能求出M∩N.

解答 解:∵集合M={-1,0,1},
集合N={y|y=sinx,x∈M}={-sin1,0,sin1},
∴M∩N={0}.
故选:D.

点评 本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\sqrt{3}$sinxcosx-cos2x+$\frac{1}{2}$,(x∈R).
(1)若对任意x∈[-$\frac{π}{12}$,$\frac{π}{2}$],都有f(x)≥a,求a的取值范围;
(2)若先将y=f(x)的图象上每个点纵坐标不变,横坐标变为原来的2倍,然后再向左平移$\frac{π}{6}$个单位得到函数y=g(x)的图象,求函数y=g(x)-$\frac{1}{3}$在区间[-2π,4π]内的所有零点之和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,a、b、c分别是角A、B、C的对边,C=2A,sinA=$\frac{\sqrt{7}}{4}$,
(I)求cosC,cosB的值;
(II)若ac=24,求边b的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}满足an+1=3an+2,且a1=2.
(I)求证:数列{an+1}是等比数列;
(II)判断数列$\{\frac{{2×{3^n}}}{{{a_n}{a_{n+1}}}}\}$的前n项和Tn与$\frac{1}{2}$的大小关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.写出数列的一个通项公式an=$\frac{n}{(2n+1)(2n+3)}$,使其前4项为$\frac{1}{15}$,$\frac{2}{35}$,$\frac{3}{63}$,$\frac{4}{99}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若(1-2x)2017=a0+a1x+a2x2+…+a2017x2017(x∈R),则$\frac{{a}_{1}}{2}$+$\frac{{a}_{2}}{{2}^{2}}$+…+$\frac{{a}_{2017}}{{2}^{2017}}$的值为(  )
A.2B.0C.-1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.把二进制数110111(2)化为十进制数为(  )
A.51B.53C.55D.57

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.坐标原点O到直线3x+4y+5=0的距离为(  )
A.5B.4C.3D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设数组A=(x1,x2,x3,x4,x5),其中xi∈{-1,0,1},i=1,2,3,4,5,求满足条件“x1+x2+x3+x4+x5=1“的数组A的个数.

查看答案和解析>>

同步练习册答案