精英家教网 > 高中数学 > 题目详情
4.若(1-2x)2017=a0+a1x+a2x2+…+a2017x2017(x∈R),则$\frac{{a}_{1}}{2}$+$\frac{{a}_{2}}{{2}^{2}}$+…+$\frac{{a}_{2017}}{{2}^{2017}}$的值为(  )
A.2B.0C.-1D.-2

分析 分别令x=0,或x=$\frac{1}{2}$,即可求出答案.

解答 解:由(1-2x)2017=a0+a1x+…a2017x2017(x∈R),
令x=0,可得1=a0
令x=$\frac{1}{2}$,可得0=1+$\frac{{a}_{1}}{2}$+$\frac{{a}_{2}}{{2}^{2}}$+…+$\frac{{a}_{2017}}{{2}^{2017}}$,
则$\frac{{a}_{1}}{2}$+$\frac{{a}_{2}}{{2}^{2}}$+…+$\frac{{a}_{2017}}{{2}^{2017}}$=-1,
故选:C

点评 本题考查了二项式定理的应用、方程的应用,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.设数列{an}的前n项和为Sn,2Sn=an+1-2n+1+1,n∈N*,且a1,a2+5,a3成等差数列.
(1)证明$\left\{{\frac{a_n}{2^n}+1}\right\}$为等比数列,并求数列{an}的通项;
(2)设bn=log3(an+2n),且Tn=$\frac{1}{{{b_1}{b_2}}}+\frac{1}{{{b_2}{b_3}}}+{\frac{1}{{{b_3}b}}_4}+…+\frac{1}{{{b_n}{b_{n+1}}}}$,证明Tn<1.
(3)在(2)小问的条件下,若对任意的n∈N*,不等式bn(1+n)-λn(bn+2)-6<0恒成立,试求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某年某学校游园有一个游戏,规则如下:盒子中有4个白球3个红球,每次从中取出一球,如果取出红球不放回,取出白球游戏结束.取出红球个数为X,奖品为Y支铅笔,Y=3-X,发放奖品后,把球全放回盒子,轮到下一名游戏者.
(1)试求某甲同学取出红球个数分布列;
(2 ) 甲、乙同学都进行了一次游戏,求甲比乙获铅笔数多的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设函数f(x)=|x-2|-|x+3|
(1)求不等式f(x)<3的解集;
(2)若不等式f(x)<3+a对任意x∈R恒成立,求实数a的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合M={-1,0,1},集合N={y|y=sinx,x∈M},则M∩N=(  )
A.{-1,0,1}B.{0,1}C.{1}D.{0}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若函数f(x)在R上可导,f(x)=x3+x2f′(1),则${∫}_{0}^{2}$f(x)dx=(  )
A.2B.4C.-2D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某校为了解全校高中学生五一小长假参加实践活动的情况,抽查了100名学生,统计他们假期参加实践活动的时间,绘成的频率分布直方图如图所示.
(1)求这100名学生中参加实践活动时间在6~10小时内的人数;
(2)估计这100名学生参加实践活动时间的众数、中位数和平均数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知变量x,y满足约束条件$\left\{\begin{array}{l}{x+y-2≤0}\\{x-y+2≥0}\\{y≥0}\end{array}\right.$.
(1)求上述不等式组表示的平面区域的面积;
(2)求z=2x+y的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知直线l1:mx+2y+3=0与l2:x+(m+1)y-1=0.当m=-2或1时,l1∥l2,当m=-$\frac{2}{3}$时,l1⊥l2

查看答案和解析>>

同步练习册答案