精英家教网 > 高中数学 > 题目详情
已知函数f(x)=log2(2x+1)的单调增区间是(  )
A、(0,+∞)
B、(-
1
2
,+∞)
C、(-∞,+∞)
D、[
1
2
,+∞)
考点:对数函数的单调区间
专题:函数的性质及应用
分析:函数f(x)为复合函数,利用同增异减原则求单调区间即可,注意真数大于0.
解答: 解:f(x)=log2(2x+1)由y=log2t和t=2x+1复合而成,
∵t=2x+1>0,
由复合函数的单调性可知f(x)=log2(2x+1)的单调增区间是(-
1
2
,+∞).
故答案为:(-
1
2
,+∞).
点评:本题主要考查了对数函数的单调性,以及简单的复合函数的单调性,解题时需注意定义域优先的原则,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

化简或求值:
(1)(2
4
5
0+2-2×(2
1
4
 -
1
2
-(
8
27
 
1
3

(2)2(lg
2
2+lg
2
•lg5+
(lg
2
)2-lg2+1

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
(1)2log32-log3
32
9
+log38-5log53

(2)0.064-
1
3
-(-
7
8
)0+[(-2)3]-
4
3
+16-0.75+0.01
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法中,正确的是(  )
A、命题“若am2<bm2,则a<b”的逆命题是真命题
B、命题“存在x0∈R,x02-x0>0”的否定是:“任意x∈R,x2-x≤0”
C、命题“p或q”为真命题,则命题“p”和命题“q”均为真命题
D、已知m,n∈R,则“lnm<lnn”是“em<en”的必要不充分条件

查看答案和解析>>

科目:高中数学 来源: 题型:

1
3
+|-2
1
3
|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=loga
1-x
1+x
(其中a>0且a≠1).
(1)判断函数f(x)的奇偶性并证明;
(2)解不等式f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|1≤x<7},B={x|2<x<10},C={x|x≤a-5或x>a+5},全集为实数集R.
(Ⅰ)求A∪B,(∁RA)∩B;
(Ⅱ)如果A∩C≠∅,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=ax+1+2(a>0且a≠1)图象一定过点(  )
A、(0,2)
B、(-1,3)
C、(-1,2)
D、(0,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题,其中正确的命题是
 
(把所有正确的命题的选项都填上).
①函数y=f(x-2)和y=f(2-x)的图象关于直线x=2对称;
②在R上连续的函数f(x)若是增函数,则对任意x0∈R均有f'(x0)>0成立;
③底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥;
④若P为双曲线x2-
y2
9
=1上一点,F1、F2为双曲线的左右焦点,且|PF2|=4,则|PF1|=2或6;
⑤如果(1+x+x2)(x-a)5(a为实常数)的展开式中所有项的系数和为0,则展开式中含x4项的系数为-5.

查看答案和解析>>

同步练习册答案