精英家教网 > 高中数学 > 题目详情
5.一只口袋里有大小形状完全相同的10个小球,其中红球与白球各2个,黑球与黄球各3个,从中随机取3次,每次取3个小球,且每次取完后就放回,则这3次取球中,恰有2次所取的3个小球颜色各不相同的概率为(  )
A.$\frac{1}{8}$B.$\frac{3}{64}$C.$\frac{3}{8}$D.$\frac{9}{64}$

分析 每次所取的3个小球颜色各不相同的概率为$\frac{1}{2}$,由此能求出这3次取球中,恰有2次所取的3个小球颜色各不相同的概率.

解答 解:每次所取的3个小球颜色各不相同的概率为:
$\frac{2{C}_{2}^{1}{C}_{2}^{1}{C}_{3}^{1}+2{C}_{2}^{1}{C}_{3}^{1}{C}_{3}^{1}}{{C}_{10}^{3}}$=$\frac{1}{2}$,
∴这3次取球中,恰有2次所取的3个小球颜色各不相同的概率为:
p=${C}_{3}^{2}(\frac{1}{2})^{2}(1-\frac{1}{2})$=$\frac{3}{8}$.
故选:C.

点评 本题考查概率的求法,是基础题,解题时要审题,注意n次独立重复试验中事件A恰好发生k次的概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.有甲、乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的列联表.
优秀非优秀总计
甲班10
乙班30
合计105
已知在全部105人中优秀的人数所占的比例为$\frac{2}{7}$.
(1)请完成上面的列联表;
(2)根据列联表的数据,若按95%的可靠性要求,能否认为“成绩与班级有关系”
参考数据:$\stackrel{∧}{y}$=1.28×10+0.08=12.38.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知x0,x0+$\frac{π}{2}$是函数f(x)=cos2(wx-$\frac{π}{6}$)-sin2wx(ω>0)的两个相邻的零点.
(1)求f($\frac{π}{12}$)的值;
(2)若对任意$x∈[-\frac{7π}{12},0]$,都有f(x)-m≤0,求实数m的取值范围.
(3)若关于x的方程$\frac{{4\sqrt{3}}}{3}f(x)-m=1$在$x∈[{0,\frac{π}{2}}]$上有两个不同的解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设m∈R,过定点A的动直线mx+y-1=0与过定点B的动直线x-my+m+2=0交于点P(x,y),则|$\overrightarrow{PA}$|+|$\overrightarrow{PB}$|的取值范围为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知a,b,c分别为△ABC三个内角A,B,C的对边,且acosC+$\sqrt{3}$asinC-b-c=0,则当a=2,△ABC的面积为$\sqrt{3}$时,△ABC的周长为6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=x+$\frac{1}{x-1}$(x>1),则(  )
A.f(x)的最大值为2B.f(x)的最大值为3C.f(x)的最小值为2D.f(x)的最小值为3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在平面直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}x=\sqrt{3}+tcos\frac{π}{4}\\ y=tsin\frac{π}{4}\end{array}\right.$(t为参数),以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为$\frac{{{ρ^2}{{cos}^2}θ}}{4}+{ρ^2}{sin^2}θ=1$.
(1)求曲线C的直角坐标方程; 
(2)求直线l与曲线C相交弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.记Sn为等差数列{an}的前n项和.若a4+a5=24,S6=48,则{an}的公差为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.有一塔形几何体由若干个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点.已知最底层正方体的棱长为2,且该塔形的表面积(含最底层正方体的底面面积)超过38,则该塔形中正方体的个数至少是(  )
A.4个B.5个C.6个D.7个

查看答案和解析>>

同步练习册答案