精英家教网 > 高中数学 > 题目详情
15.有甲、乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的列联表.
优秀非优秀总计
甲班10
乙班30
合计105
已知在全部105人中优秀的人数所占的比例为$\frac{2}{7}$.
(1)请完成上面的列联表;
(2)根据列联表的数据,若按95%的可靠性要求,能否认为“成绩与班级有关系”
参考数据:$\stackrel{∧}{y}$=1.28×10+0.08=12.38.

分析 (1)利用优秀的比例数,求解乙班的优秀人数,然后逐一求解,得到联列表.
(2)求出观测值,判断是否是“成绩与班级有关系”.

解答 解:(1)在全部105人中优秀的人数所占的比例为$\frac{2}{7}$.可知乙班优秀为:$\frac{2}{7}×105$-10=20,非优秀共有75,甲班有45,列联表:

优秀非优秀总计
甲班104555
乙班203050
合计3075105
(2)根据列联表中的数据,得到
χ2=$\frac{105(10×30-20×45)^{2}}{55×50×30×75}$≈6.109>3.841,
因此有95%的把握认为“成绩与班级有关系”.

点评 本题考查独立检验的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.若复数z满足(1-2i)z=5i(其中i为虚数单位),则z的共轭复数在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知logab>1,则下列不等式一定成立的是(  )
A.1<a<bB.a${\;}^{-\frac{1}{3}}$>b${\;}^{-\frac{1}{3}}$C.0<logba<1D.2a>2b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设函数f(x)=1nx+$\frac{a}{x-1}$(a>0).
(I)当a=$\frac{1}{2}$时,求函数f(x)的单调区间;
(2)若函数f(x)在区间(0,$\frac{1}{e}$)内有极值点,当x1∈(0,1),x2∈(1,+∞)时,求证:f(x2)-f(x1)值不小于4(其中e为自然对数的底数,e=2.71828…).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.若tanx=$\frac{1}{2}$,x∈(-$\frac{π}{2}$,$\frac{π}{2}$),求角x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知圆锥的侧面积是底面积的3倍,那么该圆锥的侧面展开图扇形的圆心角为(  )
A.90°B.120°C.150°D.180°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.某地球仪上北纬60°纬线长度为6πcm,则该地球仪的体积为288cm3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.新学年伊始,某中学学生社团开始招新,某高一新生对“海济公益社”、“理科学社”、“高音低调乐社”很感兴趣,假设她能被这三个社团接受的概率分别为$\frac{3}{4}$,$\frac{1}{2}$,$\frac{1}{3}$.
(1)求此新生被两个社团接受的概率;
(2)设此新生最终参加的社团数为ξ,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.一只口袋里有大小形状完全相同的10个小球,其中红球与白球各2个,黑球与黄球各3个,从中随机取3次,每次取3个小球,且每次取完后就放回,则这3次取球中,恰有2次所取的3个小球颜色各不相同的概率为(  )
A.$\frac{1}{8}$B.$\frac{3}{64}$C.$\frac{3}{8}$D.$\frac{9}{64}$

查看答案和解析>>

同步练习册答案