分析 (1)设事件A表示“此新生能被海济公益社接受”,事件B表示“此新生能理科学社接受”,事件C表示“此新生能被高音低调乐社接受”,此新生被两个社团接受的概率为:P($AB\overline{C}$+A$\overline{B}$C+$\overline{A}BC$),由此能求出结果.
(2)由题意得ξ的可能取值为0,1,2,3,分别求出相应的概率,由此能求出ξ的分布列和数学期望.
解答 解:(1)设事件A表示“此新生能被海济公益社接受”,事件B表示“此新生能理科学社接受”,
事件C表示“此新生能被高音低调乐社接受”,
则P(A)=$\frac{3}{4}$,P(B)=$\frac{1}{2}$,P(C)=$\frac{1}{3}$,
∴此新生被两个社团接受的概率为:
P($AB\overline{C}$+A$\overline{B}$C+$\overline{A}BC$)=$\frac{3}{4}×\frac{1}{2}×\frac{2}{3}$+$\frac{3}{4}×\frac{1}{2}×\frac{1}{3}$+$\frac{1}{4}×\frac{1}{2}×\frac{1}{3}$=$\frac{5}{12}$.
(2)由题意得ξ的可能取值为0,1,2,3,
P(ξ=0)=$\frac{1}{4}×\frac{1}{2}×\frac{2}{3}$=$\frac{2}{24}$,
P(ξ=1)=$\frac{3}{4}×\frac{1}{2}×\frac{2}{3}+\frac{1}{4}×\frac{1}{2}×\frac{2}{3}+\frac{1}{4}×\frac{1}{2}×\frac{1}{3}$=$\frac{9}{24}$,
P(ξ=2)=$\frac{3}{4}×\frac{1}{2}×\frac{2}{3}$+$\frac{3}{4}×\frac{1}{2}×\frac{1}{3}$+$\frac{1}{4}×\frac{1}{2}×\frac{1}{3}$=$\frac{10}{24}$.
P(ξ=3)=$\frac{3}{4}×\frac{1}{2}×\frac{1}{3}$=$\frac{3}{24}$,
∴ξ的分布列为:
| X | 0 | 1 | 2 | 3 |
| P | $\frac{2}{24}$ | $\frac{9}{24}$ | $\frac{10}{24}$ | $\frac{3}{24}$ |
点评 本题考查概率、离散型随机变量的分布列及数学期望、互斥事件概率计算公式、相互独立事件概率概率乘法公式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 优秀 | 非优秀 | 总计 | |
| 甲班 | 10 | ||
| 乙班 | 30 | ||
| 合计 | 105 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com