精英家教网 > 高中数学 > 题目详情
12.有一对夫妻有两个孩子,已知其中一个是男孩,则另一个是女孩的概率是(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{1}{4}$D.$\frac{3}{4}$

分析 分别求出有一个是男孩的概率和一男孩一女孩的概率,代入条件概率公式计算即可.

解答 解:设事件A为:有一个是男孩,事件B为:有一个是女孩,
则P(AB)=$\frac{1}{2}$×$\frac{1}{2}$×2=$\frac{1}{2}$,P(A)=$\frac{1}{2}$+$\frac{1}{2}×\frac{1}{2}$=$\frac{3}{4}$,
∴P(B|A)=$\frac{P(AB)}{P(A)}$=$\frac{2}{3}$.
故选B.

点评 本题考查了条件概率的计算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知甲、乙两名学生通过某种听力测试的概率分别为$\frac{2}{3}$和$\frac{1}{4}$,两人同时参加测试,其中有且只有一人能通过的概率是(  )
A.$\frac{5}{12}$B.$\frac{1}{2}$C.$\frac{7}{12}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设函数f(x)=1nx+$\frac{a}{x-1}$(a>0).
(I)当a=$\frac{1}{2}$时,求函数f(x)的单调区间;
(2)若函数f(x)在区间(0,$\frac{1}{e}$)内有极值点,当x1∈(0,1),x2∈(1,+∞)时,求证:f(x2)-f(x1)值不小于4(其中e为自然对数的底数,e=2.71828…).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知圆锥的侧面积是底面积的3倍,那么该圆锥的侧面展开图扇形的圆心角为(  )
A.90°B.120°C.150°D.180°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.某地球仪上北纬60°纬线长度为6πcm,则该地球仪的体积为288cm3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知△ABC中,a=1,b=$\sqrt{2}$,B=45°,则锐角A等于(  )
A.30°B.45°C.60°或 30°D.60°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.新学年伊始,某中学学生社团开始招新,某高一新生对“海济公益社”、“理科学社”、“高音低调乐社”很感兴趣,假设她能被这三个社团接受的概率分别为$\frac{3}{4}$,$\frac{1}{2}$,$\frac{1}{3}$.
(1)求此新生被两个社团接受的概率;
(2)设此新生最终参加的社团数为ξ,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设a,b,c∈R,且b<a<0,则(  )
A.ac>bcB.ac2>bc2C.$\frac{1}{a}$$<\frac{1}{b}$D.$\frac{a}{b}$>1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.下列命题中正确的是①②.(写出所有正确命题的序号)
①命题“?x0∈R,x${\;}_{0}^{2}$-1<0”的否定是“?x∈R,x2-1≥0”;
②命题“若x=3,则x2-2x-3=0”的否命题是“若x≠3,则x2-2x-3≠0”;
③若a,b∈R,则“log${\;}_{\frac{1}{2}}$a>log${\;}_{\frac{1}{2}}$b”是“3a<3b”的必要不充分条件;
④“cosx=cosy”是“x=y+2kπ,k∈Z”的充要条件.

查看答案和解析>>

同步练习册答案