精英家教网 > 高中数学 > 题目详情
3.设函数f(x)=1nx+$\frac{a}{x-1}$(a>0).
(I)当a=$\frac{1}{2}$时,求函数f(x)的单调区间;
(2)若函数f(x)在区间(0,$\frac{1}{e}$)内有极值点,当x1∈(0,1),x2∈(1,+∞)时,求证:f(x2)-f(x1)值不小于4(其中e为自然对数的底数,e=2.71828…).

分析 (1)求出函数的导数,解关于导函数的不等式,由导数大于0,可得增区间;导数小于0,可得减区间;
(2)得到f(x1)≤f(α)=lnα+$\frac{a}{α-1}$,f(x2)≥f(β)=lnβ+$\frac{a}{β-1}$,
问题转化为f(x2)-f(x1)≥f(β)-f(α),根据αβ=1,α+β=a+2,求出f(β)-f(α )的解析式,记h(β)=2lnβ+β-$\frac{1}{β}$(β>e),根据函数的单调性证明即可.

解答 (1)解:当a=$\frac{1}{2}$时,f(x)=lnx+$\frac{1}{2(x-1)}$(x>0且x≠1),
∴f′(x)=$\frac{1}{x}$-$\frac{1}{2}$•$\frac{1}{(x-1)^{2}}$=$\frac{2{x}^{2}-5x+2}{2x(x-1)^{2}}$,
令f′(x)=0,解得:x=$\frac{1}{2}$或2,
列表如下:

 x (0,$\frac{1}{2}$)  $\frac{1}{2}$ ($\frac{1}{2}$,1)(1,2)  2 ( 2,+∞)
 f′(x)+ 0-- 0+
f(x)  
由表格可知函数f(x)的单调区间递增区间为:(0,$\frac{1}{2}$),(2,+∞),
单调递减区间为:($\frac{1}{2}$,1),(1,2);
(2)证明:由f′(x)>0,可得0<x<α或x>β;由f′(x)<0,可得α<x<1或1<x<β
∴f(x)在(0,α)内递增,在(α,1)内递减,在(1,β)内递减,在(β,+∞)递增
由x1∈(0,1),可得f(x1)≤f(α)=lnα+$\frac{a}{α-1}$,
由x2∈(1,+∞),可得f(x2)≥f(β)=lnβ+$\frac{a}{β-1}$,
∴f(x2)-f(x1)≥f(β)-f(α)
∵αβ=1,α+β=a+2,
∴f(β)-f(α )=2lnβ+a×$\frac{α-β}{(α-1)(β-1)}$
=2lnβ+a×$\frac{\frac{1}{β}-β}{2-(a+2)}$=2lnβ+β-$\frac{1}{β}$,
记h(β)=2lnβ+β-$\frac{1}{β}$(β>e),
则h′(β)=$\frac{2}{β}$+1+$\frac{1}{{β}^{2}}$>0,h(β)在(0,+∞)上单调递增,
∴h(β)>h(e)=e+2-$\frac{1}{e}$,
∴f(x2)-f(x1)>e+2-$\frac{1}{e}$≥4.
则f(x2)-f(x1)值不小于4.

点评 本题以函数为载体,考查导数知识的运用,考查函数的极值与单调性,考查不等式的证明,综合性比较强.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知直线l的极坐标方程为ρ=$\frac{\sqrt{3}}{sin(θ+\frac{π}{3})}$,曲线C的参数方程为$\left\{\begin{array}{l}{x=2cosφ}\\{y=2sinφ}\end{array}\right.$,(φ为参数)
(1)写出直线l的普通方程与曲线C的直角坐标方程;
(2)设曲线C经过伸缩变换$\left\{\begin{array}{l}{x′=x}\\{y′=\frac{1}{2}y}\end{array}\right.$得到曲线C’,求直线l被曲线C截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设 tanα=3,则 $\frac{sin(α-π)-sin(\frac{π}{2}+α)}{cos(π-α)+cos(\frac{π}{2}-α)}$=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设随机变量ξ服从正态分布N(3,4),若P(ξ<2a-3)=P(ξ>a+2),则实数a的值为(  )
A.$\frac{7}{3}$B.$\frac{3}{5}$C.$\frac{5}{3}$D.$\frac{7}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图所示,在扇形AOB中,∠AOB=$\frac{π}{3}$,圆C内切于扇形AOB,若随机在扇形AOB内投一点,则该点落在圆C外的概率为(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知sinx=$\frac{\sqrt{2}}{2}$,当x∈[0,2π]时,求角x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.有甲、乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的列联表.
优秀非优秀总计
甲班10
乙班30
合计105
已知在全部105人中优秀的人数所占的比例为$\frac{2}{7}$.
(1)请完成上面的列联表;
(2)根据列联表的数据,若按95%的可靠性要求,能否认为“成绩与班级有关系”
参考数据:$\stackrel{∧}{y}$=1.28×10+0.08=12.38.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.有一对夫妻有两个孩子,已知其中一个是男孩,则另一个是女孩的概率是(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{1}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设m∈R,过定点A的动直线mx+y-1=0与过定点B的动直线x-my+m+2=0交于点P(x,y),则|$\overrightarrow{PA}$|+|$\overrightarrow{PB}$|的取值范围为2$\sqrt{2}$.

查看答案和解析>>

同步练习册答案